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Abstract: This paper is concerned with structural properties and construction of the quantum codes overZ;; which were
obtained through (1 — 2¢) - Constacyclic codes over Z;; + ¢Ziy, whereg? = ¢ . A Gray map is defined between Z;; +
¢Zyand 7% . The parameters of Quantum Codes over Z,; are obtained by decomposition of (I — 2g) - Constacyclic
codes into negacyclic and cyclic codes over Zj;. To illustrate restllts some examples of Quantum Codes of arbitrary

length are also obtained.
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l. INTRODUCTION

Codes over finite rings were initiated by Blake in early 1970s [13], [14]. Great progress has been made in the 1990s,
as the significant discovery that certain good nonlinear binary codes canbe constructed from cyclic codes over Z, via the
Gray map [15]. There has been an enormous development in the research on quantum codes. As the disclosure that quantum
codes secure quantum information similar to classical codes classic information. Quantum information can propagate faster
than light under certain conditions, while classical information cannot. Quan- tum information can’t be duplicated but
classical information can be. Quantum codes provide the most efficient way to overcome decoherence. The first quantum
code was found by Shor [9].

After that the construction of quantum codes through classical cyclic codes and their generalizations has developed
rapidly. Quantum codes attracted worldwide attention therefore.Later on, Calderbank et al. [3] gave a technique to build
quantum codes through classical codesin 1998. Recently the theory of quantum codes is on the path of everlasting
development. Inrecent years, the theory of quantum code has been developed rapidly (see reference [4, 6]). A significant
development in the construction of quantum codes through cyclic codes over finitechain ring F, +uF,, where u” = 0 of odd
length was made by Qian [7]. Kai and Zhu [5] also gave a method to construct quantum codes through cyclic codes over
finite chain ring F, +uF, where u> = 0 of odd length. Qian [8] studied quantum codes of arbitrary length through cyclic
codesover finite non-chain ring F, + vF,, where v’ = v. Recently, Ashraf and Mohammad [1] definedthe construction
of quantum codes through cyclic codes over finite non-chain ring F; + vF3,where v?=1. Then in [2] Ashraf and
Mohammad studied this topic over the different finite non-chain ring F, + vF,, where v*=v. This motivates us to
consider (1 —2¢) - Constacyclic codesover the finite non-chain ring Zi; + ¢Zy;, where ¢ = 1 to obtain good quantum
codes. The restof the paper is arranged in the following way, Section 2 is Preliminaries in which some funda-mental

properties and some essential definitions have been given. In Section 3 Gray Map over Z;; + ¢Z;; and its properties
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defined. Section 4 presented the development of quantum codesthrough (1 —2¢) — constacyclic codes over the considered

ring which are exemplified in section4.Finally the paper is concluded in last section.
1. PRELIMINARIES

Let Z;; is a finite filed having 11 elements that are {0, 1, 2, 3,..., 10}. firstly we start with ageneral

overview of the ring
B = ZuytcZy={0, 1, 2,.., 10, ¢, 2¢G,.., 10g, 1+¢ 1+2g,.., 1+10g 2+¢, 2+ 2,
ey 2+10¢,3+¢, 3+ 2,.., 3+ 10;,.., 10 +¢, 10 + 2,.., 10 + 10¢ }

where ¢ =¢, B is a finite, commutative, non-chain, semi-local ring with 11> = 121 elements having

characteristic 11.

B has total 100 units which are
{1, 2 3,.,10, (1+¢), 1+2),..., (1+9%), 2+¢), 2+2),.., (2+8), (2+10), (3+¢), (3+
20),.,(3+7),(3+9%),(3+10c) (4+¢), (4+2),.., (4+6),(4+8),..(4+10),(5+¢), 5+
2¢),..,(5 +5¢),(5+ 7),...,(5 + 10¢),(6 +¢),...(6 + 4¢),(6 + 6¢),...(6 + 10;),(7 +¢),..(7 +
30), (7 +5¢), ..., (7 +10¢),(8 +¢),(8 + 2),(8 + 4), ... (8 + 10¢),(9 +¢), (9 + 3),...,(9+ 10¢), (10 +
2),..,(10 + 10c) }.
The considered ring § has two maximal ideals which are

<g >

and

<l-¢

Since, it is clear that B/< ¢ >, pB/< 1 —¢ > both are isomorphic to Zy;, that is, B/<¢ >= Zi;, pl<l—¢>=

By Chinese remainder theorem, § = < ¢ >@ /< 1 —¢ >= Z1;0Z;;. Therefore, an arbitrary element
by + gb, of the considered ring can be written as

by + by = (b1 +152) () + (1) (1-0)
for all by, b, € Zy1.

Throughout the paper, we denote units of the ring 8 as 8 for sake of simplicity.

A nonempty subset $ of 8" is called a linear code over B with length n if $ is an — submodule of 8" and

the elements of J are called codewords.Let $ be a code over 8 with length nand its polynomial representation T

(3) be

n—1
T(?) = { Z XI(T) | (XDles---an—l) € 5}

i=0
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Let Y,A and O are the maps from g" to p" defined as
Y0 xar - dn-1) = Q10 X0 001 K 2)s
Ao XL K1) = (a1 X0+ Xn2)s
OG0 a1 xn1) = (SXn-1:%0sXn-2)
respectively. Then 3 is a cyclic, negacyclic and 9-constacyclic if Y(3) =9, AQ) =93 and

O(3) = 9 respectively. A code $ over B of length nis cyclic, negacyclic and $-constacyclic if and
only if T(3) is an ideal of B[t]/ < ()" —1 >B[t}) < (D" + 1 > and B[t} < ()" —9 > respectively.

For the arbitrary elements y = (xo, X1, --» Xo1) @Ay = (Wo, W1, ..., Wy1) Of B, the inner product is
defined as x.w = (xoWo + aW1 + ... + Yu-1Wu-1)- If ¥ = O, then y and v are orthogonal. If J is a linear code
over B of length n, then the dual code of J is defined as$+ =L x € " : yxy =0 forall y € 3} which is

also a linear code over S of length n. A code $ is said to be self orthogonal if 3 € $+ and said to be self dual
if 3 =3¢
I11. GRAY MAP OVER f8
The map ¢: B — Z%;; described as
o6 =p+ep) = (p.p+p)

is the Gray map. This map can be extended to 8", that is ¢: B" — Z?"11 as
0(bo, b1, b2, bn1) = (Po.p0 + 90,0101 + P11 Pn-1, 001 + Pn-1)

where b; = gp; +cpjforall 0<i<n-1.

Throughout this paper, the code § over B is considered to be with length n.
Proposition 3.1. The map ¢ is linear and distance preserving isometry from (8",dL) to( Zu*" dH ).
Proposition 3.2. If $ is linear self orthogonal code, then so is ¢(3).
1VV. QUANTUM CODES OBTAINED THROUGH (1—2%) — CONSTACYCLIC CODES OVER Z;; + 37,
Let S, D be two linear codes over 8. The operations ®, @ are defined as
S®D = {(s,d) |s€S, deD} and S@ D = {(s+d)|s€S, deD}

by using properties of Chinese Remainder theorem, any code $ over B is permutation equivalent to a code

span by the below given matrix:

L, (1-¢)D; ¢S1 ¢S, +(1—¢)D, ¢S;+ (1 —¢)D;s
0 Clkz 0 CS4_ 0
0 0 (1 =y, 0 (1—¢)D,

where S;, D; are 11-ary matrices for all 1 <i, j<4.
For a linear code § of length n over B we characterize Let S, D be two linear codes over Z;,
with length n then, for a linear code 3, define

31 = {fa+be Z" |suchthat (a+<¢h) € 3%

3o = {aeZ" |for some’d € Z" such that (a+ch)e 3%
p p
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are 2, 11-ary codes such that (1 —¢) 8, = 3 mod (¢) and ¢ 3, = 3 mod (1 —¢). Therefore,

31 and J2 are linear codes over Z;; having parameters [n,k1,d1] and [n,k2,d2] respectively. Moreover, the

linear code $ can be uniquely expressed as

3 =¢%1 ® @09 %

and also [§| = [31]I$2]-Further, ¢($) is a 11-ary linear [2n, k1 + k2, min( d1, d2)] code.

Proposition 4.1. Let 3= ¢3, @ (1 —¢)J, be a linear code over S of length n such that 31 be a linear
code having parameters [n, ky, d;] and $2 be a linear code having parameters [n, ky, d2]. Then ¢(8) is a g-

ary linear code having parameters [2n, k; + k,, min(dy,d,)].

Theorem 4.2. For $ = 1 —2¢, the code J is a § -constacyclic code over g if and only if 31 is negacyclic

code and $2 is cyclic code over Z;.
Proof. For any
¢ = Coly-iGor) EBY,
where § = cfi + (1 -, with f = (fo,f1,...fa-1) €31 and j: (0,11,...In-1) € Sofor all i
fi,l; €Z4, 0<i<n-1.
For (1 — 2¢) - constacyclic code J
O = ((1=29h1.0,ln2)
= (G-29f-1 + @ -9h-140 + L-90,..sh-2+ 1 -9h-2)
= (<f-1 + (1 -9)n-1,60 + (1 -9)D,..ch-2 + (1 -¢)In-2)
= A+ L-9Y (D)
which in 3. Therefore, 31 is a negacyclic and 32 is a cyclic codes over the Z,; with length n.

Again, 31 is a negacyclic codes and $2 is a cyclic codes over the Z;; with length n, then
A= A(f0,fL,..]n-1) = (-fn-1,10,...Tn-2) €31
and Y(D= (0,1,..,In-1)= (h-1,0,...I-2) €32 |
Hence, we have cA(F) + (L-O)Y () € ¢F1 @ (1-¢) 32 =3, implies
¢(-fn-1,70,...f1-2) + (1) (h-1,0,...In-2)
= (- 2) (Pt + (@O, 50 + (@Dl P12 + (D)

=((1-2) th1. 00 bn2)
=0(lo, b, bn1) =0 €3.

Hence, 9§ is a (1 - 2¢)-constacyclic codes over .

Theorem 4.3. For a 1 - 2¢-constacyclic code,

© 2023, IJARCSMS All Rights Reserved ISSN: 2321-7782 (Online) Impact Factor: 7.529  ISSN: 2347-1778 (Print) 32|Page



Meena et al., International Journal of Advance Research in Computer Science and Management Studies
Volume 11, Issue 3, March 2023 pg. 29-37

$ = <1 -9k2() > = <ch1(P) + (1 -9)b2(%) >,
with [g] = 1127 90h1(1))-deg(2(*)) | where 4j(t) for i = 1,2 denotes the generator polynomial of
3 fori=1,2.
Lemma 4.4. Let J be a (1 - 2¢)-constacyclic codes over 8. Then
$ = <h1(M.A-9h2() > = <ch1 () + A -9h2() >
with |§| = 112n-deg(41(f))-deg(42(1))

where g;(t) for i = 1,2 are the generator polynomials of 3, and J, respectively.
Theorem 4.5. Dual of a (1 - 2) - constacyclic code is of similar length (1 - 2¢) - constacyclic code.
Proof. The proof holds trivially as,
1-2)" = @1-2).
Lemma 4.6. For a (1 - %) - constacyclic code, the dual code
L3 =3t & Q-9
2. 9+ = <ga1*(T),(1—g)fz2*l(T) >
3. L) = 110e9(21(N)+deg(h2(1)
where, 4*(i) are reciprocal polynomials.
Lemma 4.7. [3] If § is a cyclic or negacyclic code over Z;; with generator polynomial g(7), then $+¢€
g if and only if "' —1= 0 mod(g(t)g*(1)),where 1= +1.

Theorem 4.8. If 3 = <c¢h1 (1), (A —)h2(7) >is a (1 - %) - constacyclic codes over 5, then, 1 € 9 if and only if

1+ 1 = 0mod(h1 (ha*(1) for $1

and

-1 = 0 mod(#2(Nh2(1) for $2.
Proof. First consider

f+1=0mod(s1(f)5*(1)) for 31,

i =1= 0 mod(h2(4 " 2(1)) for 3.

Then, due to Lemma 4.7,and, therefore,
St€ $rand 35 < 3o
3t S 31, (-3 S (1-9)32,

which in turn implies

3t D (1-¢)32 €31 & (193>

Thus,
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3t D (1-¢)32 €31 & (193

<ch () + (1 -9h2*() > € <cha(¥) + A -h2(h) >

and, hence
jres.
Conversely, consider
3+ c3
then
3t © (1-¢)34 <31 & (1-932,

which implies
3t € (Jaand (1-9)32 € (1-9)3F2,
Hence
3t S %1and 37 < Jp,
due to Lemma 4.7
" + 1= 0 mod(h1(h2*(1)) for $1
and
i —=1= 0 mod(h2 (k2" (1)) for 3.
Theorem 4.9. Let § be a (-constacyclic codes over . Then it’s dual code J+ is also a
¢ *-constacyclic codes over 8 of length n.
Corollary 4.10. If code 3 = ¢3: D (1 —¢)3, is a (1 - 2) - constacyclic codes over B. Then
gt cgifandonlyif 34 < J1 and §9 < Jo.

Lemma 4.11. [11] (CSS Construction). Let J be a linear code over the ring Z;; having parameters [n,

k, d]. Then a quantum code having parameter [n, 2k —n, >d];; can be obtainedif
JL+c 3.
Quantum codes can be constructed by using above Corollary 4.10 and Lemma 4.11 as follow

Theorem 4.12. If 3 =31 & (1-¢)32 = <ch1() + @ -h2(?) > is a (1 - %) -constacyclic codes
over B of length n where g;(¥) are generator polynomials of 3, and $, fori= 1,2 respectively. If 34 < 31 and J

4% C 92.Then there exists a quantum code having parameters
[2n, 2k —2n, > d|_]11 where k is the dimension of linear code ¢(3) and ¢ is minimum Lee distance of $.

V. EXAMPLE

To illustrate the results and existence of quantum codes through (1 —2¢) - constacyclic codes over g

examples are discussed in this section.
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Example 5.1. In Zy(),1° + 1 = (F+ D(F+3)(F+ A)(F+5)(F+9) and 1° —1 = (F + 2)(F +6)(¢ + 7)(}
+ 8)(++ 10) Let § be a (1-2) - constacyclic codes over f = Z;; + ¢Z;; where ¢ = ¢ with length 5.

Let 2(f) = (t1+3)and p() = (+7) then g(f) = ¢(i+3)+ (1-¢)(f+7) be the generator
polynomial of 3.
Since 41(NALHIE + 1), k(DA —1) then by using Theorem 4.8, we get 3+ € 3.

Further o(3) is a [10,8,2] linear code and by using Theorem 4.12, the quantum codes having

parameters [10,6, >2];; are obtained.

Example 5.2. InZu(h), +10 +1 = (% + D(#2 +3)¢% + 9t + 5% +9)and 110 —1= (1 +
1)(t + 2)(1 + 3)(t + 4)(i + 5)(t + 6)(1 + 7)(t + B)(1 + 9)(t+ 10) Let $ be a (1-2) -

constacyclic codes over B = Zy; + ¢Z4; Where gz = ¢ of length 10.

Let h1(1) = (2 +3) and h2() = (i+4) then g(1) = (% +3) + (1 —¢)(i + 4) te the generator
polynomial of J.

since 41 (DAL + 1), 52(DE3(H)H0 1) then by using Theorem 4.8, we get $+ € .

Further o(3) is a [20,17,3] linear code and by using Theorem 4.12, quantum codes having
parameters [20,14, >3];; are obtained.

Example 53. In Z; ()il +1 =@+ and 11 -1 = 10+ H™ Let S be a (1-2) -
constacyclic codes over g = Zy; + ¢Zy; where ¢? = ¢ of length 11.

Let p1() = (@ +%and 42() = (10+1)* then g(f) = o(f+ 1)* + (1 —)(i + 10)° be the
generator polynomial of J.

Since ﬁl(T)ﬁi(T)/(Tll +1), Zzz(T)ﬁﬁ(T)/(Tll —1) then by using Theorem 4.8, we get 3+ < J.

Further ¢(3) is a [22,18,3] linear code by using Theorem 4.12, quantum codes having parameters

[22,14, >3],; are obtained.

Example 5.4. In Zy, (), +1 = (L+1)(3+ 14+ 1)(E+ DO+ 1)@+ 21+ 1?)B+61+1)(E+ TH+1 )0 +8F+ 1
)L+ 10+ ) and —1 = 2+ )6+ DT+ P8+ D0+ (1 + 7+
2 2 2 15

2 2 2 2 2
1)YO+31+71)5+4i+1)3+5i+1)4+9+171). LetJ be a (1-2) - constacyclic codes
over B = Zy, +cZy; where ¢ = ¢ of length 15.

Let fu(f) = (° +2i+4) and () = (1 +41+5) then g(1) = ¢(i+3)+ 1)+ 7) be

the generator polynomial of J.

Since Zzl(’()M(T)/(%lS + 1), ﬁz(T)ﬁﬁ(T)/(TlS —1) then by using Theorem 4.8, we get 3+ € 3. Further ¢(3) is

a [30,26,3] linear code and by using Theorem 4.12, quantum codes having parameters [30,22, >3];; are
obtained.

Example 55. In Zyy (1), 120 +1 = (6+ 1+ $2)(2+ 21+ 12)(10 + 31+ 12)(8 + 41 + 12)(7 + 51+
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2 2 2 2 2 2 20
T)T+61+F)8+7+7T )(A0+8F+F )(2+97+1 )6+ 10+ ) and | -1=(1+H2+
2 2 2 2 2

PG+ +HE+ PO+ T+ HE+ O+ HA0+H)A+T)B+F)A4+T)E+TF)9+T)

Let 3 be a (1-2) - constacyclic codes over B = Zy; + ¢Zy; where ¢* = ¢ of length 20.

Let 51(f) = (f+3)and h2(f) = (i+7)theng(t) = ¢(t+ 3) + (1 -¢)(f+ 7) be the generator polynomial

of 9.

since 41(DEL(DIE + 1).42(DEAMIF ~1) then by using Theorem 4.8, we get 5+ € 3.

Further o(K) is a [40,38,2] linear code and by using Theorem 4.12, quantum codes havingparameters [40, 36,
>2].; are obtained.

Example 5.6. In Z;; (1,122 +1 = 1 +i)" and 122 -1 = (@ +HML0+1)" LetJ be a

(1-2¢) - constacyclic codes over 8 = Z;; + ¢Z;, where ¢ = ¢ of length 22.

Let 2:.(7) = (72 +1) and 42(1) = (1+10) then g(}) = ¢(t+3)+(1—¢)(1+7) be the generator polynomial
of 3.
Since 41(DE1 (D22 + 1), h2(DE5()/(122 —1) then by using Theorem 4.8, we get $1 C 3.

Further o(K) is a [44,41,3] linear code and by using Theorem 4.12, quantum codes havingparameters [44,38, >

3].1 are obtained.
Example 5.7. In Zyy (1),130 +1 = (1+12)(3+12)(4-+12)(5+12)(9-+12)(4-++1%)(5+21+i%)(3+ 3
+12)(9 + 41+ 2L+ 51+ 12) (L 46+ 1)(9 + Ti-+ 2) (3 +81+12)(5 + 9+ 1) (4 + 10t+1%) and
30 2 2
t ol = (LHDERHDEH)E+DGE+D O+ T+ (B+D(O+DL0+H)(L+i+i )(4+2i+F )(9+
31+ 12)(5 + 41+ 12)(3+ 51+ 12)(3+ 61+ 17)(5 + 71+ 2)(9+ 81+ 12)(4 + 81+ (D21 + 101+ 1)
Let 3 be a (1-2) - constacyclic codes over B = Zy; + ¢Z1; where ¢* = ¢ of length 30.

Let 21(1) = (#2 +9)and 4,(1) = (G+7)theng(t) = ¢(1+3)+ (1—¢)(t+7) be the generator polynomial
of 3.

Since ﬁl(T)le(T)/(Tw +1), ﬁz(T)ZzQ(?)/(TSO —1) then by using Theorem 4.8, we get 3+ < 3. Further ¢(K) is a [60,57, 3]

linear code and by using Theorem 4.12, quantum codes havingparameters [60,54, > 3];; are obtained

Table: Some examples of Quantum codes with different parameter.

Generator Polynomials 0(3) Dkd]
4 | () =1 +3t+10and hp(f) = t+1 [853] [8,2,> 3]
7| b)) =7+ 1and ho(f) = §+10 [14,12,2] [14,10,> 2]
12 | py(t) =12+ 21+ 10 and ho(f) = t+1 [24,21,3] [24,18,> 3]
13 | () =f+1and fo(f) = T+10 [26,24,2] [26,22,> 2]
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17 | b (f) =t+ 1 and 4o(t) = 1+ 10 [34,32,2] [34,30,>2]
18 | py() =12 +1and ho(f) = 2 +10f+1 [36,32,3] [36,28,> 3]
21 | p () =12 + 101+ 1 and £ (f) = t+10 [42,39,3] [42,36,> 3]
23 | hi(f) =f+1and (1) = ++10 [46,44,2] [46,42,> 2]

V1. CONCLUSIONS

In this paper, we have given a construction for quantum codes through (1—2¢) - constacyclic codes over the finite non-chain
ring B = Zy + ¢Zy; where gz = ¢. We have derived self-orthogonal codes over the ring Z;; as Gray images of linear
codes over the ring f = Z;; + ¢Zy;. In particular,the parameters of quantum codes over the ring Z;; are obtained by
decomposing (1 —2¢) - constacyclic codes into cyclic and negacyclic codes over the ring Z,,.For the further scope, one can

look at other classes of constacyclic codes over g and R = Z, + ¢Z, where P =c
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