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Abstract: The image reconstruction problem encountered in diffuse optical tomographic imaging is ill-posed in nature, 

necessitating the usage of regularization to result in stable solutions. This regularization also results in loss of resolution in 

the reconstructed images. A framework, Basis Pursuit de-convolution is used. It is shown, both in numerical and 

experimental gelatin phantom cases that the proposed method yields better recovery of the target shapes compared to 

traditional method, without the loss of quantitativeness of the results. The existing methods are compared with proposed 

method using Bayesian Classification. 
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I. INTRODUCTION 

1.1 OVERVIEW 

Soft tissue imaging using near infrared light (NIR), having wavelength range of 600–1000 nm, has become a promising 

physiological imaging modality due to the nonionizing nature of radiation [1]–[3]. Diffuse optical tomography, which uses this 

NIR light as the probing media, exploits the high intrinsic contrast provided by the soft tissue with main applications being brain 

and breast imaging [1]–[4]. Estimating the internal distribution of optical properties using NIR light measurements acquired at 

the boundary is a critical step in diffuse optical tomography [5], [6]. Unlike X-ray imaging, NIR light interaction within the 

tissue is dominated by scattering rather than absorption [5], resulting in loss of resolution in the reconstructed optical images. 

Reconstruction of the optical parameters using the limited boundary measurements, also known as the inverse problem, is 

an ill-posed and under-determined problem (limited boundary data) leading many possible solutions [7], [8]. Constraining the 

solution space via regularization is one of the common approaches for solving the inverse problem, resulting in most popular 

Gauss-Newton image reconstruction scheme. The addition of regularization also results in loss of resolution characteristics of 

the Tikhonov solution, but often necessary for enabling the computation of optical images [7], [8]. Even though there is inherent 

limitation on the achievable spatial resolution of optical images due to the dominance of scattering at NIR wavelengths, the 

reconstructed optical images typically appear to be blobby/blurry in nature with less ability to recover shapes using standard 

reconstruction techniques. The main source of this blur, other than the diffusion of light, is the regularization used for stabilizing 

the inverse problem. As one cannot perform the image reconstruction without the aid of regularization in these cases, there is a 

considerable interest in methods that can minimize the effect of regularization and reduce the blur caused by it. 

The choice of the regularization scheme that is deployed in performing the diffuse optical image reconstruction depends on 

the prior information available to the user about the noise characteristics of the data and expected image characteristics [7]–[11]. 

These regularization schemes can be as advanced as utilizing the structural priors available in dual-modality diffuse optical 

imaging [7], [8]. More importantly, the simple standard regularization schemes like Tikhonov method, that imposes quadratic 
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penalty, assumes that the expected optical image is piece-wise constant and smooth in nature [5], [7]. Thus, it leads to loss of 

sharp features in the reconstructed images. 

De-blurring of diffuse optical images has shown some promise in recovering the target shapes [12]–[14], these methods had 

used forward operator characteristics and built an information spread function (ISF) independent of image reconstruction 

procedure. In the proposed work, the aim is to build the ISF or its equivalent in an integrated approach with inclusion of 

regularization. The image de-blurring/de-convolution approaches work at their best in terms of restoration of blurred images 

when the ISF contains all sources of blurring. The de-convolution is typically performed by using constrained de-convolution 

method and least squares filtering method [15], [16]. The reconstructed optical images can also be improved by usage of shape-

recovery algorithms [17]–[20], all of them require shape-based parameterization, which are computationally expensive 

algorithms compared to the traditional Gauss-Newton image reconstruction method. These edge-preserving regularization 

methods deploy a first-order difference matrix [19], [20], which tends to be computationally expensive step for large problems. 

The method proposed in this work does not have this requirement. The most computationally expensive step in the proposed 

method involves singular value decomposition (SVD), which is commonly used in performing diffuse optical tomographic 

reconstruction [1], [21]. Also, the proposed method is aimed at removing the blur introduced by usage of regularization, making 

this universally appealing irrespective of the regularization scheme deployed. 

1.2 OPTICAL TOMOGRAPHY IMAGING 

Optical tomography is a biomedical imaging modality that uses scattered light as a probe of structural variations in the 

optical properties of tissue. In a typical experiment, a highly-scattering medium is illuminated by a narrow collimated beam and 

the light which propagates through the medium is collected by an array of detectors. There are many variants of this basic 

scenario. For instance, the source may be pulsed or time harmonic, coherent or incoherent, and the illumination may be spatially 

structured or multispectral. Likewise, the detector may be time- or frequency-resolved, polarization or phase sensitive, located 

in the near- or far-field and so on. The inverse problem that is considered is to reconstruct the optical properties of the medium 

from boundary measurements. The mathematical formulation of the corresponding forward problem is dictated primarily by 

spatial scale, ranging from the Maxwell equations at the microscale, to the radiative transport equation at the meso-scale, and to 

diffusion theory at the macroscale. In addition, experimental time scales vary from the femtosecond on which light pulses are 

generated, through the nanosecond on which diffuse waves propogate, to the millisecond scale on which biological activation 

takes place and still longer for patho physiologic changes.  

Medical imaging is a widely expanding field of development and research. Techniques such as x-ray computed tomography 

(CT) and more recently magnetic resonance imaging (MRI) have revolutionised diagnosis and treatment of a wealth of illnesses. 

The contrast presented by a medical image is a consequence of the type of interactions occurring between the probing radiation 

and the different tissues that compose the body. X-rays yield images where bones are prominent since x-rays are far less 

absorbed by most other tissues in the body. MRI images examine the response of molecules to changes in magnetic filed, and 

ultrasound images depend on the acoustic mismatches between adjacent tissues. 

Optical tomography is a new medical imaging technique that uses near infrared (NIR) light as the probing radiation. A major 

absorber of NIR in tissues is the haemoglobin in blood. The diagnostic potential of NIR the absorption characteristics of 

oxygenated and deoxygenated blood were found to be quite different at NIR wavelengths.  

Subsequently, it was found that the oxygenation status of brain tissue could be determined from measurements of its 

absorption at a number of NIR wavelengths. Changes over time of the concentrations of oxy- and deoxy- haemoglobin in the 

brains. 

A NIR imaging system that could provide maps of the oxygenation status of tissue within a living brain (or other part of the 

body) would reveal information about the functional and metabolic activity of tissues previously inaccessible. Applications 
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considered in this thesis are imaging the neonatal brain, the adult breast and the forearm. The neonatal brain is a suitable 

application for optical tomography since new-born infants (particularly those born prematurely) can suffer permanent brain 

damage as a result of peri-natal illnesses and conditions which affect the supply of oxygen to brain tissue. Since their heads are 

small, NIR light can be used to probe functional parameters of tissue deep within the brain of a new-born infant. An advantage 

of using NIR light to create an imaging system is that it is safe, nonionising and does not require a shielded room in which to 

acquire data (unlike x-ray and MRI methods), and so can be performed repeatedly at the bedside. Hence NIR can be used to 

monitor the progression of conditions and potentially allow new treatments to be developed, and the response to treatment to be 

monitored. Detecting abnormalities in the function of tissues should allow earlier intervention than most other imaging 

modalities which are unable to detect events that don't manifest as a gross change in tissue structure or composition. 

1.3 OPTICAL PROPERTIES OF TISSUES 

This section introduces the basic theory of the interaction of light with tissue. Each optical property is described in turn. 

The bulk optical properties of composite tissues are then described along with the specific characteristics of water and 

haemoglobin. Finally the origin of contrast in clinical optical imaging is described with reference to brain, breast and arm 

imaging and their associated anatomy and pathologies. 

The optical properties of a tissue are primarily described in terms of: 

ü Absorption 

ü Scatter 

ü Anisotropy 

ü Refractive index 

All of these parameters will be dependent on the wavelength of the light probing the tissue. Additional optical 

characteristics of tissues include their fluorescence and inelastic scatter properties although the measurements and analysis in 

this thesis are limited to the effects of absorption and elastic scatter (and diffraction and reflection). 

The microscopic optical properties of tissue constituents do not directly translate to the macroscopic behaviour of light in 

the tissue. For example a red blood cell contains absorbing haemoglobin and scatters light due to its shape and the refractive 

index mismatch between it and the surrounding liquid. The bulk optical properties of whole blood will depend on how many 

blood cells are present, their orientation and the properties of the blood plasma. 

1.4 APPLICATIONS FOR OPTICAL TECHNIQUES 

The applications of Near Infrared Light (NIR) methods are therefore widely varied. This section presents a brief review of 

the different ways in which NIR light is applied to tissues in terms of the geometry of the measurement, and then with reference 

to the type of light source and detection system utilized. The latter governs the parameters that can be usefully extracted from 

measurements. The former includes microscopy techniques, although only macroscopic geometries are detailed here. 

A NIR method will utilize a combination of a particular geometry. The geometries commonly used to acquire NIR data on 

tissues are: 

ü Single-point, for solely spectroscopic measurements e.g. of a tissue sample, 

ü Global, for measurement of a large volume of tissue, e.g. an area of the brain, 

ü Topographic, an imaging method where a number of measurements over the surface of the tissue map the optical 

properties of regions just below the surface. 
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ü Tomographic, imaging where measurements through a large volume of tissue are used to simultaneously quantifying 

the optical properties of different regions throughout the measured volume. 

Simply placing a light source (or optical fibre carrying light) onto the surface of tissue, and detecting the transmitted light at 

some distance away via a fibre (or detector) can allow useful measurement of the optical properties of the tissue. The scattering 

nature of tissue means that a volume can be sampled in reflection or transmission geometries. 

Figure 1 shows the sensitivity of intensity measurements made at the tissue surface to changes in the absorption coefficient 

within the tissue volume. The depth and size of the region sampled by a measurement depends on the shape of the object, the 

separation of the source and detector, and the optical properties of the tissue itself. 

 
Fig .1.1: A source and detector placed onto the surface of tissue yield a measurement of the tissues volume's optical properties. 

 

II. LITERATURE SURVEY 

Diffuse Optical Tomography (DOT) studied by D.A.Boas,et.al,(2001) is an ongoing medical imaging modality in which 

tissue is illuminated by near-infrared light from an array of sources, the multiply-scattered light which emerges is observed with 

an array of detectors, and then a model of the propagation physics is used to infer the localized optical properties of the 

illuminated tissue. The three primary absorbers at these wavelengths, water and both oxygenated and deoxygenated 

hemoglobin, all have relatively weak absorption. This fortuitous fact provides a spectral window through which we can attempt 

to localize absorption (primarily by the two forms of hemoglobin) and scattering in the tissue. The most important current 

applications of DOT are detecting tumors in the breast and imaging the brain. We introduce the basic idea of DOT and review 

the history of optical methods in medicine as relevant to the development of DOT. The basics of modelling the DOT forward 

problem and some critical issues among the numerous implementations that have been investigated for the DOT inverse 

problem, with an emphasis on signal processing.  

A.Gibson, J. C.Hebden, and S. R.Arridge(2005) review the current state-of-the-art of diffuse optical imaging, which is an 

emerging technique for functional imaging of biological tissue. It involves generating images using measurements of visible or 

near-infrared light scattered across large (greater than several centimetres) thicknesses of tissue. The recent advances in 

experimental methods and instrumentation, and  new theoretical techniques applied to modelling and image reconstruction were 

discussed and examined. The recent work on in vivo applications including imaging the breast and brain, and  future challenges 

were reviewed and examined. 

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh (2010) discussed the diffusion model for light transport in tissues and 

the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein 

quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for 

near-infrared or diffuse optical spectroscopy is developed, and the basic elements of diffuse optical tomography are outlined. 

We also discuss diffuse correlation spectroscopy, a technique whereby temporal correlation functions of diffusing light are 
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transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain 

and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. 

D. R. Leff, et.al,(2008) suggests thatscreening X-ray mammography is limited by false positives and negatives leading to 

unnecessary physical and psychological morbidity. Diffuse Optical Imaging using harmless near infra red light, provides lesion 

detection based on functional abnormalities and represents a novel diagnostic arm that could complement traditional 

mammography. Reviews of optical breast imaging have not been systematic, are focused mainly on technological 

developments, and have become superseded by rapid technological advancement. The aim of this study is to review clinically 

orientated studies involving approximately 2,000 women in whom optical mammography has been used to evaluate the healthy 

or diseased breast. The results suggest that approximately 85% of breast lesions are detectable on optical mammography. 

Spectroscopic resolution of tissue haemoglobin composition and oxygen saturation may improve the detectability of breast 

diseases. Results suggest that breast lesions contain approximately twice the haemoglobin concentration of background tissue. 

Current evidence suggests that it is not possible to distinguish benign from malignant disease using optical imaging techniques 

in isolation. Methods to improve the performance of Diffuse Optical Imaging, such as better spectral coverage with additional 

wavelengths, improved modeling of light transport in tissues and the use of extrinsic dyes may augment lesion detection and 

characterization. Future research should involve large clinical trials to determine the overall sensitivity and specificity of optical 

imaging techniques as well as to establish patient satisfaction and economic viability. 

S. R. Arridge and J. C. Schotland(2009)review of recent mathematical and computational advances in optical tomography. 

The physical foundations of forward models for light propagation on microscopic, mesoscopic and macroscopic scales have 

been discussed. The direct and numerical approaches to the inverse problems that arise at each of these scales are considered. 

Future directions and open problems in the field are outlined. 

S. R. Arridge and J. C. Hebden(1997) have developed the image reconstruction procedures involving solution of the inverse 

problem. This approach is based on the assumption that, given a set of measurements of transmitted light between pairs of 

points on the surface of an object, there exists a unique three-dimensional distribution of internal scatterers and absorbers which 

would yield that set. Thus imaging becomes a task of solving an inverse problem using an appropriate model of photon 

transport. In this paper they examined the models that have been developed for this task, and review current approaches to 

image reconstruction. Specifically, they consider models based on radiative transfer theory and its derivatives, which are either 

stochastic in nature (random walk, Monte Carlo, and Markov processes) or deterministic (partial differential equation models 

and their solutions). Image reconstruction algorithms are discussed which are based on either direct back projection, 

perturbation methods, nonlinear optimization, or Jacobian calculation. They have discussed some of the fundamental problems 

that must be addressed before optical tomography can be considered to be an understood problem, and before its full potential 

can be realized. 

Diffuse optical tomography (DOT) involves estimation of tissue optical properties using noninvasive boundary 

measurements. The image reconstruction procedure is a nonlinear, ill-posed, and ill-determined problem, so overcoming these 

difficulties requires regularization of the solution. While the methods developed for solving the DOT image reconstruction 

procedure have a long history, there is less direct evidence on the optimal regularization methods, or exploring a common 

theoretical framework for techniques which uses least-squares (LS) minimization. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, 

and K. D. Paulsen(2007) have discussed generalized least-squares (GLS) method, which takes into account the variances and 

covariances among the individual data points and optical properties in the image into a structured weight matrix. It is shown that 

most of the least-squares techniques applied in DOT can be considered as special cases of this more generalized LS approach. 

The performance of three minimization techniques using the same implementation scheme is compared using test problems with 

increasing noise level and increasing complexity within the imaging field. Techniques that use spatial-prior information as 

constraints can be also incorporated into the GLS formalism. It is also illustrated that inclusion of spatial priors reduces the 
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image error by at least a factor of 2. The improvement of GLS minimization is even more apparent when the noise level in the 

data is high (as high as 10%), indicating that the benefits of this approach are important for reconstruction of data in a routine 

setting where the data variance can be known based upon the signal to noise properties of the instruments. 

B. W. Pogue, et. al,(2011) suggest that Near-infrared Spectroscopy (NIRS) of tissue provides quantification of absorbers, 

scattering and luminescent agents in bulk tissue through the use of measurement data and assumptions. Prior knowledge can be 

critical about things such as (i) the tissue shape and/or structure, (ii) spectral constituents, (iii) limits on parameters, (iv) 

demographic or biomarker data, and (v) biophysical models of the temporal signal shapes. A general framework of NIRS 

imaging with prior information is presented, showing that prior information datasets could be incorporated at any step in the 

NIRS process, with the general workflow being: (i) data acquisition, (ii) pre-processing, (iii) forward model, (iv) 

inversion/reconstruction, (v) post-processing, and (vi) interpretation/diagnosis. Most of the development in NIRS has used ad 

hoc or empirical implementations of prior information such as pre-measured absorber or fluorophore spectra, or tissue shapes as 

estimated by additional imaging tools.  

In diffuse optical tomography (DOT), the object with unknown optical properties is illuminated with near infrared light and 

the absorption and diffusion coefficient distributions of a body are estimated from the scattering and transmission data. The 

problem is notoriously ill-posed and complementary information concerning the optical properties needs to be used to counter-

effect the ill-posedness. In this article, P. Hiltunen, D. Calvetti, and E. Somersalo(2008)propose an adaptive inhomogenous 

anisotropic smoothness regularization scheme that corresponds to the prior information that the unknown object has a blocky 

structure. The algorithm updates alternatingly the current estimate and the smoothness penalty functional, and it is demonstrated 

with simulated data that the algorithm is capable of locating well blocky inclusions. The dynamical range of the reconstruction 

is improved, compared to traditional smoothness regularization schemes, and the crosstalk between the diffusion and absorption 

images is clearly less. The algorithm is tested also with a three-dimensional phantom data. 

Diffuse optical tomography (DOT) retrieves the spatially distributed optical characteristics of a medium from external 

measurements. Recovering the parameters of interest involves solving a nonlinear and highly ill-posed inverse problem. In this 

paper,C. Panagiotou, et.al,(2009) examines the possibility of regularizing DOT via the introduction of a priori information from 

alternative high-resolution anatomical modalities, using the information theory concepts of mutual information (MI) and joint 

entropy (JE). Such functional evaluate the similarity between the reconstructed optical image and the prior image while 

bypassing the multimodality barrier manifested as the incommensurate relation between the gray value representations of 

corresponding anatomical features in the two modalities.  

In this paper, P. Hiltunen, S. Sarkka, I. Nissila, A. Lajunen, and J. Lampinen(2011)present a regularization method in the 

nonstationary inverse problem for diffuse optical tomography (DOT). The regularization is based on a choosing time evolution 

process such that in a stationary state it has a covariance function which corresponds to a process with similar smoothness 

properties as the first-order smoothness Tikhonov regularization. The proposed method is computationally more lightweight 

than the method where the regularization is augmented as a measurement. The method was tested in the case of the inverse 

problem of DOT. A solid phantom with optical properties similar to tissue was made, incorporating two moving parts that 

simulate two different physiological processes: a localized change in absorption and a surrounding rotating two-part shell which 

simulates slow oscillations in the tissue background physiology.  

 

 

 

 



Megala.N et al.,                                                International Journal of Advance Research in Computer Science and Management Studies 

                                                                                                                                                 Volume 3, Issue 5, May 2015 pg. 237-248 

 © 2015, IJARCSMS All Rights Reserved                                                       ISSN: 2321-7782 (Online)                                              243 | P a g e  

III. METHODOLOGY 

3.1 PROPOSED SYSTEM ARCHITECTURE 

 
Fig. 3.1: Proposed System Architecture 

3.2 MODULES 

ü Basis Pursuit De-convolution 

ü SVD-Based Basis Pursuit De-convolution 

ü Fast SVD-Based Basis Pursuit De-convolution  

ü Bayesian –Decision Classification 

3.2.1 BASIS PURSUIT DE-CONVOLUTION 

The de-convolution problem is one of the classical inverse problems, where the aim will be to obtain a de-convolved (un-

blurred) image from a blurred version of the image.In basic pursuit approach, the penalty function is based on l1-norm, which 

promotes sparseness and sharp features, compared to traditional l2-norm based penalty.This objective function can be minimized 

using spilt augmented Lagrangian shrinkage algorithm (SALSA).The SALSA algorithm is known to have high convergence 

speed among all existing l1-norm based algorithms, enabled via variable splitting of minimization problem. 

The model-based reconstruction relies on minimizing the residue of the linear equations along with a regularization 

functional having a smoothness constraint, known as Tikhonov Regularization, where the objective function can be written as 

 ᴁὃὼ ὦᴁ ‗ᴁὼᴁ       ρ 

where, λ is the regularization parameter, providing the balance between residue of the linear equations (first term on the 

right-hand side) and expected initial pressure distribution (x). The l2-norm is represented by ||.||
2

2 . The function W is minimized 

with respect to x, resulting in, 

ὼ !! λ) !ὦ      ς 

The regularization parameter dictates the reconstructed initial pressure distribution characteristics. Higher regularization 

tends to over-smooth the image while lower λ values amplifies the noise in the images. 

The basic steps needed for SALSA are given in Algorithm 1. The inputs Band Wmaare obtained using (1) and (2), 

respectively. Theɚl1 is the regularization parameter for this de-convolution problem and typically chosen heuristically. The other 

reconstruction parameter that is used in this scheme is a, which has similar functionality as except, it weighs the l2-norm of the 

unknown parameter. The other input to this estimation process is number of iterations typically kept at 100. 

													INPUT IMAGE image	
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SVD BASED BASIS 
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3.2.2 SVD-BASED BASIS PURSUIT DE-CONVOLUTION 

The SVD-Basic pursuit de-convolution process of integrating the information contained in all the low resolution 

observations into a Tomography Imaging.The Singular Value decomposition method gives better results in applications like 

Basis Pursuit De-convolution. 

The SVD of can be written as, 

                                               J = USV
T
   (3) 

where U and V are orthogonal matrices and Sis a diagonal matrix containing the singular values (arranged in 

descending order).A basis pursuit de-convolution approach that uses model-resolution matrix was introduced as an additional 

step in the image reconstruction procedure to improve the reconstructed image characteristics. 

3.2.3 FAST SVD-BASED BASIS PURSUIT DE-CONVOLUTION 

The model-resolution characteristics was limited to building a regularization term, while in this model-resolution matrix 

was used to perform the de-convolution and remove the blur introduced in the l2-norm based regularization. Also, the process of 

performing the image reconstruction along with the de-convolution procedure is performed using the Fastsingular value 

decomposition (SVD) of the Jacobian matrix to provide the required computational efficiency. 

The fast SVD pursuit represents the mean value of optical absorption coefficient of the region of interest (ROI) and the 

background respectively. The variance of optical absorption coefficient of the ROI and the background is represented based on 

the sigma value. 

The targets considered till now were regular in shape, next, a numerical experiment where the target is irregular in shape 

was considered. 

3.2.4 BAYESIAN ïDECISION CLASSIFICATION 

Bayesian classification is based on Bayes Theorem. Bayesian classifiers are the statistical classifiers. Bayesian classifiers 

can predict class membership probabilities such as the probability that a given tuple belongs to a particular class. 

A Bayesian based logical representation for relational decision trees and show how to correctly translate firstorder logical 

decision trees into logic programs. The resulting programs contain invented predicates and contain both universal and existential 

quantifiers through the use of negation. We show that this makes logical decision trees more expressive than the programs 

typically induced by ILP systems, and equally expressive as first-order decision lists. 
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There are two types of probabilities − 

ü Posterior Probability 

ü Prior Probability 

A Bayesian classifier is based on the idea that the role of a (natural) class is to predict the values of features for members of 

that class. Examples are grouped in classes because they have common values for the features. Such classes are often called 

natural kinds. In this section, the target feature corresponds to a discrete class, which is not necessarily binary. 

The idea behind a Bayesian classifier is that, if an agent knows the class, it can predict the values of the other features. If it 

does not know the class, Bayes' rule can be used to predict the class given (some of) the feature values. In a Bayesian classifier, 

the learning agent builds a probabilistic model of the features and uses that model to predict the classification of a new example. 

A latent variable is a probabilistic variable that is not observed. A Bayesian classifier is a probabilistic model where the 

classification is a latent variable that is probabilistically related to the observed variables. 

IV. CONCLUSION 

The reconstruction results involving two targets using the standard method (without de-convolution) and proposed method 

(basis pursuit de-convolution). The regularization parameter in the Tikhonov minimization (standard method) was chosen 

automatically using the SVD method. 

The regularization parameter ɚl1was chosen heuristically, and the correspondingvalue of awas computed to be ɚl1/0.01. The 

same reconstruction parameters were used in both SVD-based basis pursuit de-convolution (BPD) and the BPD-based image 

reconstruction. The reconstruction times taken for standard method, traditional basis pursuit method, and SVD-based proposed 

methods. 

The fast SVD pursuit represents the mean value of optical absorption coefficient of the region of interest (ROI) and the 

background respectively. The variance of optical absorption coefficient of the ROI and the background is represented based on 

the sigma value. 

A Bayesian classifier is a probabilistic model where the classification is a latent variable. 

Computationally, the basic pursuit de-convolution is less efficient when compared to point evolution methods like snakes. 

Implementation performs computation in aoptical tomograpic band to improve efficiency. The reconstruction and 

decomposition of this narrow-band can be optimized.  

       The input image is the target image and the source image is the image with noise.The resultant image is obtained after 

performing the Basis Pursuit De-Convolution. 

 
Fig. 4.1:Sparse Representation Pursuit De-Convolution 
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Bayesin classification is done in order to compare the deconvolution methods and the accuracy value of Basis Pursuit De-

Convolution is 19.887955.The figure shows the regression tree viewer. 

 
Fig. 4.2:Bayesian Classification-Basis Pursuit De-Convolution 

 

The target image is the input image and the source image is the image with noise.The resultant image is obtained after 

performing Singular Value Decomposition (SVD) Pursuit De-Convolution. 

 
Fig. 4.3: SVD Pursuit De-Convolution 

 

Bayesin classification is done in order to compare the deconvolution methods and the accuracy value of SVD Pursuit De-

convolution is 64.985994. 

 
Fig. 4.4: Bayesian Classification-SVD Pursuit De-Convolution 

 

The input image is the target image and the source image is the image with noise.The resultant image is obtained after 

performing Singular Value Decomposition (SVD) Pursuit De-Convolution. 

 
Fig.4.5: Fast SVD Pursuit De-Convolution 

BAYESIAN CLASSIFICATION-BASIS 

PURSUIT DE-CONVOLUTION 

BAYESIAN CLA SSIFICATI ON-SVD 

PURSUIT DE-CONVOLUTI ON 
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Bayesin classification is done in order to compare the deconvolution methods and the accuracy value of Fast SVD Pursuit 

De-Convolution is 91.596639. 

 
Fig.4.6: Bayesian Classification-Fast SVD Pursuit De-Convolution 

 

V. DISCUSSION 

Three types of de-convolution method is done for the same image. Bayesian decision classification is performed in order to 

compare the results obtained from each de-convolution method. The Bayesian classification is done using regression tree. The 

results obtained from proposed method provides better accuracy compared to the results obtained from the existing method.  

VI. CONCLUSION 

The diffuse optical tomographic imaging has been a main contender to become adjunct imaging modality for breast and 

brain imaging.The image reconstruction procedure is highly ill-posed, necessitating the usage of regularization, which makes 

the reconstructed images loose sharp features.ASVD-based basis pursuit de-convolution was introduced to improve the 

reconstructed image characteristics.It was shown that the reconstructed images using the proposed method are more accurate 

compared to the results obtained using existing method.  

VII. FUTURE SCOPE 

The future scope of my proposed method is to put effort to detect the tumour or cancer in the image with better results.  
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