

© 2015, IJARCSMS All Rights Reserved 184 | P a g e

ISSN: 232 7782 (Online) 1

Computer Science and Management Studies

International Journal of Advance Research in
Volume 3, Issue 2, February 2015

Research Article / Survey Paper / Case Study
Available online at: www.ijarcsms.com

Replanning Technique of web Service Composition
Savan M. Patel

M.Tech. (CE) Dept.
U.V.Patel Engg. College

Kherva, India

Abstract: Web Services have become a standard for integration of systems in distributed environment.The Service-Oriented

Computing (SOC) paradigm refers to the set of concepts, principles, and methods that represent computing in Service-

Oriented Architecture (SOA) in which software applications are constructed based on independent component services with

standard interfaces. One of the most important benefits of Service-Oriented Computing is to foster the satisfaction of end-

user needs through the automatic generation of composite services out of simpler services existing in the user environment.

Different approaches have been proposed in the last years to address this issue, e.g., based on model-checking or AI

planning. Still, these approaches do not cope with the inherent dynamicity of the service pervasive world, where not only

available services, but also user needs, may evolve over time. Setting up service composition in an AI planning framework,

we used replanning techniques enabling service compositions to adapt at run-time, both to service and requirement changes,

paving the way for on-demand and sustainable end-user service composition. We compare replanning technique with the

web service composition algorithm.

Keywords: Service composition, Service-Oriented Computing, Web Services, Semantic Web Services. Replanning technique.

I. INTRODUCTION

Web services, adopted by Service Oriented Architecture (SOA), are loosely coupled reusable software components that

semantically encapsulate discrete functionality and are distributed and programmatically accessible over the internet. It should

facilitate integration of newly built applications both within and across organizational boundaries avoiding difficulties due to

different platform, heterogeneous programming language. Web services can be used alone or in conjunction with other web

services to carry out a complex aggregation or a business transaction. A web service is described using a standard that provides

all of the details necessary to interact with the service such as, message formats, transport protocols, and location.

1. Web Services- Web services defined by software system

to support machine-to-machine interaction over a

network. The W3C has a more elaborate definition:[3]

“A Web service is a software system designed to support

interoperable machine to machine interaction over a

network. It has an interface described in a machine

process able Format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by

its description using SOAP messages, typically conveyed

using HTTP with an XML serialization in conjunction

with other web-related standards.”

Fig.1 Web Service Model[6].

http://www.ijarcsms.com/
http://www.ijarcsms.com/

Savan et al., International Journal of Advance Research in Computer Science and Management Studies
 Volume 3, Issue 2, February 2015 pg. 184-191

 © 2015, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 185 | P a g e

2. Service providers- They use a traditional a programming language such as Java, C++, or C# to write program

components. All components will be wrapped with open standard interfaces, call services, or Web services if the services

are available over the internet, so that application builders can simply use the services without further communication

with the service providers. The same services can be used by many applications.

3. Service brokers- Allow services to be registered and published for public access. Help application builders to find

services they need.

4. Application builders- Instead of constructing software from scratch using basic programming language constructs, the

application builders represent the end users to specify the application logic in a high-level specification language, using

standard services as components. Application builders are software engineers who have a good understand of software

architecture and the application domain.

5. Web Services Composition- Individual web services cannot satisfy all the service requests. It becomes necessary to

combine functionality of several web services to full fill the need of a given client or when the implementation of a web

service’s business login involves the invocation of other web services. Such a service built from multiple web service is

called a composite service and the process of developing a composite service is called service composition. The

components of a composite service can in turn be an elementary service or a composite service.[31]

II. BACKGROUND AND RELATED WORK

We have used replanning algorithm focused at obtaining an updated service composition solution efficient rather than

obtain in gall possible modified service composition solutions. We will use two Qos parameters namely Response time and

Throughput. We will use these Qos parameters to compare our replanning algorithm with Qos parameters and without Qos

parameters. Replanning which is the standard planning technique for plan modification. We will compare our replanning

algorithm with the standard greedy algorithm.

A. Web Service Composition Algorithm

Algorithm uses heuristics to search for a repaired composition. The algorithm starts from the goal level. It tries to satisfy

the unimplemented goals first (Line 2 to 8). When new services are added into the partial planning graph, its precondition may

not be satisfied. The unsatisfied preconditions are added to U to be satisfied at a lower level (Line 8, 17 and 29). This process

goes from the goal level toward the initial proposition level (Line 10 to 18). It is possible that after adding actions at A1, we still

have some broken preconditions. In this case, we need to add new levels (Line 19 to 32). We use UH to record the history of

preconditions we have satisfied. If UH ∩ U ≠ ø, that means some precondition broken for the second time. It is a deadlock

situation. We stop the search. This Algorithm is a best first search algorithm. It does not generate a full planning graph, but

rather, to fast fix the broken graph and obtain a feasible solution. It is possible that algorithm does not find a solution to a

problem with solutions. It is possible that algorithm generates a graph that contains multiple solutions. Therefore, a

backwardsearch() function returns the first obtained solution. We know that a solution can be found from the graph made of the

originally broken plan and the newly added services. backwardsearch() is on this very small graph, thus fast.

III. PROBLEM FORMULATION AND ALGORITHM

Following are some definitions and equations that are define in our approach for formulating the replanning technique.

1). Definition 1 (web service (w)): “A Web service is a software system designed to support interoperable machine to

machine interaction over a network.” A web service whose inputs are in(w) and whose outputs are out(w).

2). Definition 2 (Partial Planning Graph (G)): We first identify the new composition problem with the new set of available

services and new goals. The disappeared services are removed from the original planning graph and new goals are

Savan et al., International Journal of Advance Research in Computer Science and Management Studies
 Volume 3, Issue 2, February 2015 pg. 184-191

 © 2015, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 186 | P a g e

added to the goal level, yielding a partial planning graph. The repair algorithm “regrows” this partial planning graph

wherever the heuristic function tells the unimplemented goals and broken preconditions can be satisfied.

3). Definition 3 (Unimplemented goals (g)): g is the set of unimplemented goals.

4). Definition 4 (Unsatisfied preconditions (U)): U is a set of unsatisfied preconditions (inputs) of some services in Partial

Planning Graph (G).

5). Definition 5 (Initial level and Final level (Lin and Lout)): Lin is the initial proposal level noted as P0; the first action

level is noted as A1; the last proposition level Pn which is also the Lout level.

6). Equation 1: Assume we want to add an action w to the highest action level n, the evaluation function is:

f(G,w)=|g ∩ out(w) | * 10 +| Pn-1 ∩ in(w) |- | in(w) – Pn-1 | - e(w,G)

Equation 1[12]

Where |ğ ∩ out(w)| is the number of unimplemented goals that can be implemented by w. The coefficient 10 is the

weight of this term. It shows that to satisfy the goals is more important than the other needs represented by the following

terms; |Pn-1 ∩ in(w)| is the number of the inputs of w that can be provided by the known parameters at the level Pn-1;

|in(w) – Pn-1| is the number of the inputs of w that cannot be provided by the known parameters at the level Pn-1. This

set needs to be added into U, if w is added. e(w,G) is the number of the actions in G that are exclusive with w.

7). Equation 2: Assume we want to add an action w to action level m, and m is not the goal level, the evaluation function

is:

f(G,w)=|g ∩ out(w) | * 10 + | Pm-1 ∩ U ∩ out(w) | + |Pm-1 ∩ in(w) | - | in(w) – Pm-1 | - e(w,G)

Equation 2[12]

Compared to equation 1, the above equation added term |Pm ∩ U ∩ out(w)| which is the number of the broken

propositions in level Pm that can be satisfied by the outputs of w.

Qos Parameters: There are following Qos parameters used in algorithm.

1). Throughput: It is critical for service consumers to know the amount of work that a service can perform in a given period

of time (e.g., number of requests per second). For example, in airline booking services, intensive inquiries are often

inputted within a short period of time, so it is important for consumers of such service to ensure that service’s

throughput can fulfill an anticipated volume of requests. Throughput of a service, S, can be represented as follows.

Throughput (S) = Number of requests / per unit-of-time

According to the service’s granularity, the unit-of-time may vary from mini-second to minute. As well as response time,

a flexible description method is required to adapt throughput descriptions to different services.

2). Response time: Response time is a typical measurable performance attribute that refers to the elapsed time between the

initiation of a service request and the completion of the service’s response. The evaluation of response time usually

consists of execution time and waiting time. A service’s response time for a request, R, can be represented as shown

below.

Response time(R) = Execution time(R) + Waiting time(R)

The execution time is the duration of performing service functionality. The waiting time is the amount of time for all

possible mediate events such as message transmissions between service consumers and providers. However, the

evaluation of response time is controversial due to the uncertainty of network fluctuations. From service consumer

Savan et al., International Journal of Advance Research in Computer Science and Management Studies
 Volume 3, Issue 2, February 2015 pg. 184-191

 © 2015, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 187 | P a g e

perspective, it is meaningful to consider response time as the duration starting from the issue of a request to the end of

receipt of a service’s response. But from service provider perspective, response time is considered as same as execution

time of a service, so it does not include all possible mediate events, which are seen as incontrollable variables during

service execution. The gap is because of the fact that service providers cannot precisely describe the waiting time of a

service execution. In order to minimize the gap, a flexible description method is required to balance the two viewpoints.

A). Replanning Algorithm

Input: W, G, U, g defined as before

Output: either a plan or fail

1: result = fail then stop and return fail otherwise going to next step

on 1
reak
l An

l Pn
 g

ons)
lt

o
do

ion 2
n break
vel Am

vel Pm
 from U

-1 to U
sult

U

l A1
 - U

ø do

n break
evel A1

evel PE
 from U

0 to U
rom W
reak

H
lt

)
lt

2: while any unimplemented goal (g) is remaining in set of g then do
3: select web service (w) with the f(G,w) according to equati
4: if w does not exist then b
5: add w to G at action leve
6: add out(w) at proposition leve
7: remove satisfied goal from
8: add in(w) – Pn-1 to U(unsatisfied preconditi
9: if g ≠ø then return resu

10: for m = n -1; m> 0; m -- d
11: while U ∩ Pm ≠ø
12: select web service (w) with the f(G,w) according to equat
13: if w does not exist the
14: add w to G at action le
15: add out(w) at proposition le
16: remove satisfied preconditions
17: add in(w) – Pm
18: if U ∩ Pm ≠ø then return re
19: UH =
20: while any unsatisfied preconditions remaining(U) and any web service is remaining then do
21: insert an empty proposition level (PE) and empty action leve
22: PE = P0
23: while U ∩ PE ≠
24: select an action w with the best f(G,w) according to equation 2
25: if w does not exist the
26: add w to G at action l
27: add out(w) at proposition l
28: remove satisfied preconditions
29: add in(w) - P
30: remove w f
31: if U ∩ PE ≠ø; then b
32: if U ∩ UH ≠ø then break else add U to U
33: if U ≠ø then return resu
34: result = backwardsearch(G
35: return resu

Algorithm Description

• Algorithm uses heuristics to search for a repaired composition.

• The algorithm starts from the goal level. It tries to satisfy the unimplemented goals first (Line 2 to 8).

• When new services are added into the partial planning graph, its precondition may not be satisfied.

• The unsatisfied preconditions are added to U to be satisfied at a lower level (Line 8, 17 and 29).

• This process goes from the goal level toward the initial proposition level (Line 10 to 18).

• It is possible that after adding actions at A1, we still have some broken preconditions. In this case, we need to add new

levels (Line 19 to 32).

Savan et al., International Journal of Advance Research in Computer Science and Management Studies
 Volume 3, Issue 2, February 2015 pg. 184-191

 © 2015, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 188 | P a g e

• We use UH to record the history of preconditions we have satisfied. If UH ∩ U ≠ ø, that means some precondition

broken for the second time. It is a deadlock situation. We stop the search.

This Algorithm is a best first search algorithm. It does not generate a full planning graph, but rather, to fast fix the broken

graph and obtain a feasible solution. It is possible that algorithm does not find a solution to a problem with solutions. It is

possible that algorithm generates a graph that contains multiple solutions. Therefore, a backwardsearch() function returns

the first obtained solution. We know that a solution can be found from the graph made of the originally broken plan and

the newly added services. backwardsearch() is on this very small graph, thus fast.

B). Flowchart

Web service composition replanning Algorithm

depend on No. of service in repository so as we

increases no. of service execution time is also

increase. The time complexity in the worst case is

O(bm). Where b is the maximum number successors

of any nodes, namely, the number of services that

can produce any concept required by the candidate

composition, m is the maximum depth of the search

space, namely, the maximum number of services in

a composition. Fig. 2 Flowchart of replanning algorithm

IV. EXPERIMENTAL SETUP

A). Web Service Challenge (WSC) Test Set

• The web service challenge started in 2005 to stimulate research into web service composition, growing and evolving
each year.

• During the years 2005 to 2007, the Web Service Challenge focused on optimizing the service discovery and
composition process solely, using abstractions from real-world situations. The taxonomies of semantic concepts as
well as the involved data formats were purely artificial.

• Starting with the 2008 competition, the data formats and the contest data itself will be based on the OWL, WSDL,
and WSBPEL schemas for ontologies, services, and service orchestrations to mimic real world scenario.

• In 2009, each service is annotated with nonfunctional properties. The Quality of Service (QoS) of a Web Service is
expressed by values expressing its response time and throughput.

B). Hardware Configuration:

All experiments were performed on a PC platform with a Intel(R) Core(TM) i3 CPU (2.40 GHz), Windows 7 Home
Basic, and 3.00 GB RAM, 64 bit Opearating System All algorithms were implemented in Java with the use of the Eclipse
tool.

C). Experiment Results With Comparison:

a). Comparison of without Qos and with Qos replanning algorithm results

Dataset
No.

No. of
Service
in dataset

No. of
concepts
in dataset

No service
in
Compsition

Execution
Time(Mill.se
c)

1 572 1578 3 15
2 4129 12388 6 16
3 8138 18573 3 31
4 8301 18673 5 62

Table 1.1- without Qos replanning algorithm result

BP

Serv ices

Repalanning
algorithm

Reposito ry
with Qos

parameter

Planning
Graph

Precondition
N ot Satisfied

Satisfied

BPH
Broken

Precond ition

BH n BP ? ø

Dead lock

Stop

Broken
Precondition

Add N ew
Level

Solu tion

BH = BP

Satisfied

Stop

Savan et al., International Journal of Advance Research in Computer Science and Management Studies
 Volume 3, Issue 2, February 2015 pg. 184-191

 © 2015, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 189 | P a g e

0
50
100

57
2

41
29

81
38

83
01

Execution
Time
(ms)

No. of services in dataset

No. of services in dataset Vs
Execution Time(ms)

Without Qos

with Qos

Datase
t No.

No. of
Service
in
dataset

No. of
concepts
in
dataset

No service
in
Compositio
n

Execution
Time(ms)

Throughtput Response
time

min Max min max

1 572 1578 3 5 1000 20000 10 500
2 4129 12388 6 20 1000 20000 10 500
3 8138 18573 3 52 1000 20000 10 500
4 8301 18673 5 60 1000 20000 10 500

Table 1.2- without Qos replanning algorithm results

Analysis

The above comparison of performance is recorded in the cases that

both with Qos and without Qos parameters replanning algorithms

can find solutions.Figure show the results from Experiment 1. From

Figure we can see that the without replanning algorithm execution

time is slightly decreasing when more Web services are removed. It

is because the with Qos replanning service composition algorithm

check the Qos parameter from the services so it takes some time.

Minimum time for the throughput Qos parameter is 1000 millisecond

and maximum time is 20000 millisecond. Minimum time for the

response time Qos parameter is 10 millisecond and maximum time is 500 millisecond.

b). Comparison of Greedy Algorithm with Repairing Algorithm

Table 2.1 Greedy algorithm results

Data
Set

No.
Service

No.
Concept

No.Service
in Com‐
position

Execution
time

Without Qos

1 249 173 10 23

2 322 239 10 44

3 422 273 10 167

4 727 366 10 494

5 3112 1223 10 175

Table 2.2 Replanning algorithm results

Analysis

Figure show the number of services and execution time

for composition in a composed plan. Our explanation is

that our repair algorithm does not work faster than the

greedy algorithm because replanning algorithm takes time

to finds a solution; the quality of the solution is pretty

good. When services are 727 then require execution time

is exponentially increased and when services are 3112

then it exponentially decrease.

Data
Set

No.
Service

No.
Concept

No. Service
in Com‐
position

Execution
time

Without Qos

1 249 173 10 1985

2 322 239 10 2460

3 422 273 10 853

4 727 366 10 5113

5 3112 1223 10 311

Savan et al., International Journal of Advance Research in Computer Science and Management Studies
 Volume 3, Issue 2, February 2015 pg. 184-191

 © 2015, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 190 | P a g e

V. CONCLUSION AND FUTURE WORK

Service compositions have to be adapted whenever the composition context, i.e., available services and composition

requirements, change. We have set up service composition in the AI planning domain and we have used a planning graph repair

algorithm focused at obtaining an updated service composition solution fast rather than obtaining all possible modified service

composition solutions. We observed that when services are removed on a percentage basis of the whole service set, and when

available services are more and similar the repaired plan can be as good as the one obtained with replanning but is more similar

to the original plan.

To improve the repair algorithm following existing work in replanning that propose, upon disappearance of some

service(s). To remove even more services in order to jump out of local extrema in the search for a new plan.

References

1. W3C. SOAP 1.2 Working draft, 2001. http://www.w3.org/TR/2001/WD-soap12-part0-20011217

2. UDDI Consortium. UDDI Executive White Paper, Nov. 2001. http://uddi.org/pubs/UDDI_Executive_White_Paper.pdf

3. T. Berners-Lee, J. Hendler, and O. Lassila, The Semantic Web, Scientific American May 2001.

4. E.Christensen, F.Curbera, G.Meredith and S.Weerawarana., Web Services Description Language (WSDL) 1.1, 2001. http://www.w3.org/TR/2001/NOTE-
wsdl-20010315

5. S.McIlraith, T.C.Son and H.Zeng., “Semantic Web Services”, IEEE Intelligent Systems, 16(2), Mar.2002.

6. Antonio Bucchiarone 1, Stefania Gnesi, “A survey on Service Composition Languages and Model”, International Workshop on Web Services Modeling
and Testing (WS-MaTe 2006).

7. G.Alonso, F.Casati, H.Kuno and V.Machiraju., “Web Services: Concepts, Architectures and Application”, Springer-Verlag Berlin Heidelberg 2004.

8. M.Dean, D.Connolly, F.van Harmelen, J.Hendler, I.Horrocks, D.L.McGuinness, P.F.Patel-Schneider and L.AStein., “Web Ontology Language (OWL) “
Reference Version1.0, W3C Working Draft 12 November 2002.

9. Schahram Dustdar, Wolfgang Schreiner, “A survey on web services composition”, International Journal of Web and Grid Services, Vol. 1, No. 1, 2005.

10. Jorge Cardoso, “Quality of Service and Semantic Composition of Workflows”, PhD thesis, Department of Computer Science, University of Georgia,
Athens, GA (USA), 2002.

11. Zeng Liang zhao，Benatallah B, Dumasm, et al., “Quality driven Web services composition”, in Proc. of the12th International Conference on World Wide
Web. New York: ACM Press, 2003: 411-421.

12. Yuhong Yan, Pascal Poizatyz and Ludeng Zhao., “Repairing Service Compositions in a Changing World”, Concordia University, Montreal, Canada, zLRI
UMR 8623 CNRS, Orsay, France.

13. Weigand, Willem-Jan van den Heuvel and Marcel Hiel, “Rule-Based Service Composition and Service-Oriented Business Rule Management”,
INFOLAB, Tilburg University, Warandelaan 2, Tilburg, The Netherlands.

14. T. Weise, S. Bleul, D. Comes, and K. Geihs. “Different approaches to semantic web service composition”, In ICIW ’08: Proc. of the 2008 3rd
International Conference on Internet and Web Applications and Services, pages 90–96, Washington, DC, USA, 2008. IEEE Computer Society.

15. Frederico G. Alvares de Oliveira Jr., Jos´e M. Parente de Oliveira, “QoS-based Approach for Dynamic Web Services Composition”, Journal of Universal
Computer Science, vol. 17, no. 5 (2011), 712-741.

16. S. Kambhampati, E. Parker, and E. Lambrecht. Understanding and Extending Graphplan. In S. Steel and R. Alami, editors, Proc. of ECP, volume 1348 of
Lecture Notes in Computer Science, pages 260–272.Springer, 1997.

17. S.-C. Oh, D. Lee, and S. Kumara. Web Service Planner (WSPR): An Effective and Scalable Web Service Composition Algorithm. Int. J. Web Service
Res., 4(1):1–22, 2007.

18. S. Chandrasekaran, S. Madden, and M. Ionescu, “Ninja workflows: An architecture for composing services over wide area networks,” Univ. California,
Berkeley, CA, CS262 class project writeup, 2000.

19. S. Ghandeharizadeh ,Craig A. Knoblock , C. Papadopoulos , E. Alwagait , C. Shahabi, “Proteus: A System for Dynamically Composing and Intelligently
Executing Web Services”, in Proc. 1stInternational Conference on Web Services (ICWS), Las Vegas, Nevada, 2003.

20. Debra Vandermeer, “FUSION: a system allowing dynamic web service composition and automatic execution”, in Proc. of IEEE International Conference
on E-Commerce (CEC’03) Athens, Greece, 2003.

21. Shankar R. Ponnekanti and Armando Fox, “SWORD: A developer toolkit for web service composition”, in Proc. 11th World Wide Web Conference,
Honolulu, Hawaii, May 7-11, 2002.

22. E. Sirin and B. Parsia, “Planning for semantic web services,” in Proc. Semantic Web Services Workshop 3rd Int. Semantic Web Conf., 2004.

23. M. Minami, H. Morikawa, and T. Aoyama, “The design and evaluation of an interface-based naming system for supporting service synthesis in ubiquitous
computing environment,” Trans. Inst. Electron., Inf.Commun. Eng., vol. J86-B, no. 5, pp. 777–789, May 2003.

24. Q. Z. Sheng, B. Benatallah, M. Dumas, and E. Mak, “SELF-SERV: A platform for rapid composition of web services in a peer-to-peer environment,” in
Proc. 28th Very Large Database Conf., Hong Kong, China, Aug. 2002.

25. Hongbing Wang,Joshua Zhexue Huang, Yuzhong Qu, Junyuan Xie , “Web services: problems and future directions”, Journal of Science Direct.

Savan et al., International Journal of Advance Research in Computer Science and Management Studies
 Volume 3, Issue 2, February 2015 pg. 184-191

 © 2015, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 191 | P a g e

26. F. Lautenbacher, B. Bauer, “A Survey on Workflow Annotation and Composition Approaches”, In M. Hepp, K. Hinkelmann, D. Karagiannis, R. Klein, N.
Stojanovic (eds.) Semantic Business Process and Product Lifecycle Management, in Proc. of the Workshop SBPM 2007, Innsbruck, April 7, 2007, CEUR
Workshop Proceedings, ISSN 1613-0073, online CEUR-WS.org/Vol-251.

27. Kaouthar Boumhamdi, Zahi Jarir , “A Flexible Approach to Compose Web Services in Dynamic Environment”, International Journal of Digital Society
(IJDS), Volume 1, Issue 2, June 2010.

28. Sleiman Rabah, Dan Ni, Payam Jahanshahi, Luis Felipe Guzman (2011), “Current State and Challenges of Automatic Planning in Web Service
Composition”, Department of Computer Science and Software Engineering Concordia University Montréal, Québec, Canada.

29. David Martin , Mark Burstein , Drew McDermott ,Sheila McIlraith , Massimo Paolucci Katia Sycara , Deborah L. McGuinness , Evren Sirin , Naveen
Srinivasan, “Bringing Semantics to Web Services with OWL-S”, Springer Science July 2007.

30. George Baryannis and Dimitris Plexousakis, “Automated Web Service Composition: State of the Art and Research Challenges”, Technical Report ICS
FORTH/TR-409 October 2010.

AUTHOR(S) PROFILE

Savan Patel, received the Bachelor of Engineering degree in Computer Engineering from

Sankalchand Patel College of Engineering, Visnagar under Gujarat Technological University

Ahmedabad in 2012 and Completed Master of Technology in Computer Engineering from

U.V.Patel College of Engineering, Mehsana.

