

© 2014, IJARCSMS All Rights Reserved 161 | P a g e

ISSN: 232 7782 (Online) 1

Computer Science and Management Studies

International Journal of Advance Research in
Volume 2, Issue 8, August 2014

Research Article / Survey Paper / Case Study
Available online at: www.ijarcsms.com

Managing Small Size Files through Indexing in Extended
Hadoop File System

K. P. Jayakar1
Department & PVPIT Bavdhan

University of Pune
Pune – India

Y. B. Gurav2
Computer Department & PVPIT Bavdhan

University of Pune
Pune – India

Abstract: HDFS (Hadoop Distributed File System) is a distributed user level file system which stores, processes, retrieves

and manages data in a Hadoop cluster. HDFS infrastructure that Hadoop provides, include a dedicated master node called

Name Node which contains a job tracker, stores meta-data,controls the overall distributed process execution by checking out

whether all name nodes are functioning properly through periodic heart beats. It also contains many other nodes called

Data Node which contains a task tracker, stores applications data. The Ethernet network connects all nodes. HDFS is

implemented in Java and it is platform independent. Files in HDFS are split into blocks and each block is stored as an

independent file in the local file system of Data Nodes. Each block of a HDFS file is replicated at least three times inmultiple

Data Nodes. Through replication of application data, provides data durability. In HDFS, it does not provide any prefetching,

combined file to improve the I/O performance. Extended Hadoop Distributed file system (EHDFS) improves storing and

accessing efficiency of small file on file system, In this approach the files are stored in one file is known as combined file on

Datanode or client. The ConstituentFileMap is most important in EHDFS for an efficient management. To access individual

file from combined file Indexing mechanism is use. To minimize load on NameNode and I/O performance improvement

index prefetching is used. The footprint in NameNode is reduced then the file system becomes more efficient. EHDFS

minimize the time period required for processing.

Keywords: Hadoop, NameNode, Datanode, HDFS, EHDFS, ConstituentFileMap.

I. INTRODUCTION

Hadoop is a framework written in Java for running applications on large clusters of commodity hardware and incorporates

features similar to those of the Google File System (GFS) and of the MapReduce computing paradigm. Hadoop’s HDFS is a

highly fault-tolerant distributed file system and, like Hadoop in general, designed to be deployed on low-cost hardware. It

provides high throughput access to application data and is suitable for applications that have large data sets

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware. It has

many similarities with existing distributed file systems. However, the differences from other distributed file systems are

significant. HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high throughput

access to application data and is suitable for applications that have large data sets.

HDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode, a master server that manages the

file system namespace and regulates access to files by clients. In addition, there are a number of DataNodes, usually one per

node in the cluster, which manage storage attached to the nodes that they run on. HDFS exposes a file system namespace and

allows user data to be stored in files. Internally, a file is split into one or more blocks and these blocks are stored in a set of

DataNodes. The NameNode executes file system namespace operations like opening, closing, and renaming files and

directories. It also determines the mapping of blocks to DataNodes. The DataNodes are responsible for serving read and write

http://www.ijarcsms.com/
http://www.ijarcsms.com/

Jayakar et al. International Journal of Advance Research in Computer Science and Management Studies
 Volume 2, Issue 8, August 2014 pg. 161-167

 © 2014, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 162 | P a g e

requests from the file system’s clients. The DataNodes also perform block creation, deletion, and replication upon instruction

from the NameNode.

The existence of a single NameNode in a cluster greatly simplifies the architecture of the system. The NameNode is the

arbitrator and repository for all HDFS metadata. The system is designed in such a way that user data never flows through the

NameNode.

The rest of this paper is organized as follows: Section II describes Existing System, Section III describes Problem in

Existing System, Section IV explains Propose system, section V Results, Section VI concludes and Provides possible future

directions.

II. EXISTING SYSTEM

Hadoop is an open source framework for providing distributed storage and data processing capabilities to data intensive

applications. It consists of two major components: Hadoop Distributed File System (HDFS), for distributed storage and

MapReduce, for distributed computation.

A. Hadoop File System

Hadoop distributed file system is used in a situations where massive amounts of data need to be processed. HDFS has

highly fault-tolerant property and it is deployed on low-cost hardware. HDFS also provide high throughput access to application

data and it is suitable for the applications which have large data sets. The NameNode also executes file system namespace

operations like opening file/directories, closing file/directories, renaming file/directories.[8] It also performs the mapping of

blocks to DataNodes. The architecture if HDFS is shown in Figure 1.

The NameNode and DataNode are pieces of software designed to run on commodity machines. These machines typically

run a GNU/Linux operating system (OS). HDFS is built using the Java language; any machine that supports Java can run the

NameNode or the DataNode software. Usage of the highly portable Java language means that HDFS can be deployed on a wide

range of machines. A typical deployment has a dedicated machine that runs only the NameNode software.

HDFS was designed to be a scalable, fault-tolerant, distributed storage system that works closely with MapReduce. HDFS

will “just work” under a variety of physical and systemic circumstances. By distributing storage and computation across many

servers, the combined storage resource can grow with demand while remaining economical at every size.

Minimal data motion. MapReduce moves compute processes to the data on HDFS and not the other way around. Processing

tasks can occur on the physical node where the data resides. This significantly reduces the network I/O patterns and keeps most

of the I/O on the local disk or within the same rack and provides very high aggregate read/write bandwidth. Rack awareness

allows consideration of a node’s physical location, when allocating storage and scheduling tasks. Utilities diagnose the health of

the files system and can rebalance the data on different nodes. Rollback allows system operators to bring back the previous

version of HDFS after an upgrade, in case of human or system errors. Highly operable. Hadoop handles different types of

cluster that might otherwise require operator intervention. This design allows a single operator to maintain a cluster of 1000s of

nodes Standby NameNode provides redundancy and supports high availability.

Jayakar et al. International Journal of Advance Research in Computer Science and Management Studies
 Volume 2, Issue 8, August 2014 pg. 161-167

 © 2014, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 163 | P a g e

Fig 1. HDFS architecture

Block replication decisions are taken by NameNode. NameNode receives a heartbeat and a block report from each of the

Datanodes in the cluster. A block report contains a list of all blocks on a DataNode. Receipt of a heartbeat implies that the

DataNode is functioning properly.

III. PROBLEM IN EXISTING SYSTEM

Client request to name node to access the metadata which stores in main memory of NameNode. When a file whose size is

larger than block size is stored, the amount of metadata stored is justified by the size .When a large number of small files, the

block size is greater than the file size, the corresponding metadata stored is high.[12]

Hadoop has a serious Small File Problem. It’s widely known that Hadoop struggles to run MapReduce jobs that involve

thousands of small files: Hadoop much prefers to crunch through tens or hundreds of files sized at or around the magic 128

megabytes.[8]

A small file is one which is significantly smaller than the HDFS block size (default 64MB). If you’re storing small files,

then you probably have lots of them, and the problem is that HDFS can’t handle lots of files.[10]

Every file, directory and block in HDFS is represented as an object in the NameNode’s memory, each of which occupies

150 bytes. So 10 million files, each using a block, would use about 3 gigabytes of memory. Scaling up much beyond this level is

a problem with current hardware. Certainly a billion files is not feasible.

Small files run into thousands and cause many issues in production :--

1) Each file reference accounts to ~150 bytes of memory in the Name node. Thats about 1GB for every million blocks. As

the number of files on the HDFS grows, the size of the fsimage grows. Hence, the name node process runs into the

danger of slowness.

2) While running map/reduce jobs. The loading of thousands of small files cause a lot of time, specifically, if your small

files are in snappy compressed form.

3) The number of blocks also increases as the number of small files increase. This causes, increase number of map tasks.

Though increase in number of map tasks sometimes increase in parallelism and hence, job efficiency, but, too many

mappers will cause too much load on the cluster causing slowness of job execution.

IV. PROPOSE SYSTEM

The modified HDFS is nothing but the Extended High Distributed System (EHDFS).EHDS is used to improve the

efficiency with handles small files. EHDFS include four operations i.e. File merging, File mapping, prefetching and file

extraction shown in Fig 2.

Jayakar et al. International Journal of Advance Research in Computer Science and Management Studies
 Volume 2, Issue 8, August 2014 pg. 161-167

 © 2014, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 164 | P a g e

Fig 2. Architecture of Extended-HDFS

A. File Merging

HDFS is the amount of memory used by the NameNode to manage these files. Differentiation between a small file and a

large file does not in HDFS and hence stores the same amount of metadata regardless of the file size.In HDFS, NameNode

maintains two types of metadata i.e. the file metadata and the block metadata.[13]

The NameNode also provides an “index entry number”. This “index entry number” specifies which entry in the index table

stored at the beginning of the block corresponds to the requested small file, thereby avoiding a linear search.File metadata

manages information about the file such as location of the file in the name space tree, name of the file, file Size, access time,

modification time, file permissions, and ownership details.[11]

File metadata and block metadata maintained by NameNode is reduced by file merging technique for small files. File

merging ensures that the NameNode maintains metadata only for the combined file and not for all the small files present in it.

The names of the constituent files and their block information are maintained as part of a special data structure in the

NameNode. [5]

At the beginning of block, file data and index table is placed The table contains an entry for each small file that is a part of

the block. Every table entry is an (offset, length) pair. For the mth files in the block, the mth entry in the index table specifies the

offset of the first byte of the small file from the beginning of block and the length of the small file in bytes. The structure of the

produced block, named as extended block, is depicted in fig 3.

B. File Mapping

When user wants to read a small file from combined file, File mapping technique comes into play. File mapping is the

process of mapping large number of small file names to the block of the combined file that contains this file, complete process

is carry out at NameNode.

ConstituentFileMap contains 8 small files spread over 3 blocks. The first block contains the files f1 and f2. The second

block holds four files from f3 to f6, while the last block stores the remaining two files. Along with the name of the file, we

maintain information about ordering of files in the block. The file names are hashed into the constituent file map. [7] This is

done using the “index entry number” field. Fig 4 shows the ConstituentFileMap data structure for a combined file named temp.

The user has to explicitly Specify the name small file while initiating the read operation of the combined file and the. The

location of desired small file is obtained, when a request is sent to NameNode, along with two file names. For each combined

file, NameNode maintains a data structure called as Constituent FileMap. It contains a mapping between a small file name and

the logical block number of the combined file that holds this small file. [2]

Jayakar et al. International Journal of Advance Research in Computer Science and Management Studies
 Volume 2, Issue 8, August 2014 pg. 161-167

 © 2014, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 165 | P a g e

Fig 3.Extended block structure

C. Prefetching

ConstituentFileMap contains 8 small files spread over 3 blocks. The first block contains the files f1 and f2. The second

block holds four files from f3 to f6, while the last block stores the remaining two files. The file names are hashed into the

constituent file map. It is necessary to maintain information about ordering of files in the block. This is done using the “index

entry number” field. Fig 4 shows the ConstituentFileMap data structure for a combined file named temp.[9]

Fig 4. Constituent File Map structure

D. File Extraction

The process of Extracting a desired file contents from a block is called file extraction. DataNode performs the file

extraction operation. File extraction operation not only reduce the load on the network as the entire block but also data is not

sent back to the client.To obtain a the desired file, client specifies both the name of small file and name of combined file.[2] The

obtained “index entry number” is then sent to the DataNode that has the block. The entry in index table contains the offset of the

file data from the beginning of the block and also the length of the file data.The DataNode then uses this value and seeks to the

desired entry in the index table placed at the beginning of the block. The DataNode then seeks to the desired offset and reads the

requested file data and sends it to the client.[8]

V. RESULTS

A. HDFS

In Hadoop, map-reduce is most important part. Fig 5 shows the output of the HDFS system. At the start the user had given

2227 files as an input. All files are different type. To process all different type of files it needs 1 hour 30 mins. Firstly all 2227

files are map and then reduce.

Jayakar et al. International Journal of Advance Research in Computer Science and Management Studies
 Volume 2, Issue 8, August 2014 pg. 161-167

 © 2014, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 166 | P a g e

Fig.5 Output of HDFS

B. EHDFS

An extended Hadoop distributed file system is very reliable, and easy to use as compare to HDFS. EHDFS saves processing

time compare with HDFS. In minimum time period EHDFS produces the expected output. It also minimise the burden on main

NameNode.EHDFS is able to reduce the metadata footprint on Name Node’s main memory. It also improves efficiency storing

and accessing large of number small files.

Fig 6. Output of the EHDFS

C. Comparison Of Map-Reduce Operation In HDFS And EHDFS

It describes the current usage Live/retired Nodes in HDFS and EHDFS in fig 7. Job_201406230606_0002 is the HDFS job,

in this job it takes 2227 files as input and performs the map-reduce operation. After performing map-reduce only one map file is

created. Job_201406230606_0003 created after performing EHDFS operation. In EHDFS the only one map file is given as input

and EHDFS operations are performed. The time required to perform the EHDFS operation is very low as compared to HDFS

and memory usage become low.

Running jobs shows the currently running files which are completing its own task if currently no job is running ,then it is

indicated by none label. Completed jobs shows jobs whose task is completed with the attributes like priority specifies the

priority of the job such as NORMAL, HIGH, LOW. User indicate the user name, name is the name of the command. Map %

complete and Reduce % complete refers to percentage of the map operation completed, percentage of the reduce operation

completed .Map Total shows the number of the files were processed. Retired jobs shows jobs whose functionality is not in use.

Jayakar et al. International Journal of Advance Research in Computer Science and Management Studies
 Volume 2, Issue 8, August 2014 pg. 161-167

 © 2014, IJARCSMS All Rights Reserved ISSN: 2321‐7782 (Online) 167 | P a g e

Fig.7 map-reduce Table of HDFS and EHDFS

VI. CONCLUSION

In EHDFS, Metadata footprint in name node’s main memory is reduced and improvement in accessing and storing files.

Improvement in accessing and storing proves that the time required for processing is also reduced. It minimise Number of node

failure in EHDFS, so ultimately it will reduce system performance lost. Burden on name node‘s main memory and time required

for processing is reduces using EHDFS.

Input /Output performance improves, and footprint in NameNode memory is also reduces. It is positive impact on the large

number of small files. EHDFS generates the results in minimum time duration, and produced result indicated best result

compare to HDFS. As for future work, this solution can be improved further to provide a more advanced prefetching framework

Appendoperation can be provided by EHDFS, to add files into an existing combined file.

References

1. Jason Venner, Pro Hadoop, 1st ed. Apress, Jun. 2009, pp. 4 17

2. Tom White, “The Small Files Problem”. http://www.cloudera.com/blog/2009/02/the small files problem, 2009

3. Chuck Lam, Hadoop In Action, 1st ed. Dec. 2010, pp. 8.

4. S. Ghemawat, H. Gobioff, S. Leung. “The Google File System”. In Proceedings of ACM Symposium on Operating Systems Principles, Lake George, NY,
October 2003, pp. 29 43.

5. “HDFS Arhitecture Guide”. http://hadoop.apache.org/common/docs/current/hdfs design.html, 2009.

6. “Apache Hadoop”. http://hadoop.apache.org/, 2009

7. http://wiki.apache.org/hadoop/

8. B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, Y. Li. “A Novel Approach to Improving the Efficiency of Storing and Accessing Small Files on Hadoop: A
Case Study by PowerPoint Files”. In Proceedings of IEEE International Conference on Services Computing, Miami, Florida, USA, July 2010, pp. 65 72

9. http://blog.cloudera.com/blog/2009/02/the-small-files-problem/

10. http://www.idryman.org/blog/2013/09/22/process-small-files-on-hadoop-using-combinefileinputformat-1/

11. http://amilaparanawithana.blogspot.in/2012/06/small-file-problem-in-hadoop.html

12. hvachko, K.; Hairong Kuang ; Radia, S. ; Chansler, R. " The HadoopDistributed File System". Published in: IEEE 26th Symposium on MassStorage
Systems and Technologies (MSST), Incline Village, NV, May2010. Page(s): 1 - 10. E-ISBN: 978-1-4244-7153-9. Print ISBN: 978-1-4244-7152-2.
INSPEC Accession Number: 11536653. D.O.I:10.1109/MSST.2010.5496972.

13. http://www.orzota.com/single-node-hadoop-tutorial/

14. http://www.orzota.com/multi-node-hadoop-tutorial/

15. http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf

	A. File Merging
	B. File Mapping
	C. Prefetching
	D. File Extraction

