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Abstract: Online social networks have become a significant source of personal information. Profit is the main participation 

incentive for social network providers. Its reliance on user profiles their users voluntarily reveal a wealth of personal data, 

including age, gender, contact information, preferences and status updates. A recent addition to this space, geosocial 

networks (GSNs) further collect fine grained location information, through check-ins performed by users at visited venues. 

Social networks have been shown to leak and even sell user data to third parties. There exists therefore a conflict. Without 

privacy people may be reluctant to use geosocial networks; without user information the provider and venues cannot support 

applications and have no incentive to participate. 

In this paper, we propose to take first steps toward addressing the conflict between profit and privacy in geosocial networks. 

We introduce VCPROFILE a novel framework location centric profiles (LCPs). LCPs are statistics built from the profiles of 

users that have visited a certain location or a set of co-located users. LCP endows users with strong privacy guarantees and 

providers with correctness assurances. In addition to a venue centric approach, we propose a decentralized solution for 

computing real time LCP snapshots over the profiles of colocated users. The implementation shows that VCProfile is 

efficient; the end-to-end overhead is small even under strong privacy and correctness assurances. 

Keywords: Privacy Preserving, Geosocial netoworks,  

I. INTRODUCTION 

Online social networks have become a significant source of personal information. Their users voluntarily reveal a wealth of 

personal data, including age, gender, contact information, preferences and status updates. A recent addition to this space, 

geosocial networks (GSNs) such as Yelp [1] and Foursquare [2] further collect fine grained location information, through 

check-ins performed by users at visited venues. Overtly, personal information allows GSN providers to offer a variety of 

applications, including personalized recommendations and targeted advertising, and venue owners to promote their businesses 

through spatio-temporal incentives, e.g., rewarding frequent customers through accumulated badges. Providing personal 

information exposes however users to significant risks, as social networks have been shown to leak [3] and even sell [4] user 

data to third parties. There exists therefore a conflict. Without privacy people may be reluctant to use geosocial networks; 

without user information the provider and venues cannot support applications and have no incentive to participate. In this paper, 

we take first steps toward addressing this conflict. Our approach is based on the concept of location centric profiles (LCPs). 

LCPs are statistics built from the profiles of (i) users that have visited a certain location or (ii) a set of co-located users. 

http://www.ijarcsms.com/
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We introduce VCProfile, a framework that allows the construction of  LCPs based on the profiles of present users, while 

ensuring the privacy and correctness of participants. Informally, we define privacy as the inability of venues and the GSN 

provider to accurately learn user information, including even anonymized location trace profiles. Verifying the correctness of 

user data is necessary to compensate for this privacy constraint: users may cheat and bias LCPs anonymously. We consider two 

user correctness components. First, location correctness, where users should only contribute to LCPs of venues where they are 

located. 

This requirement is imposed by the recent surge of fake checkins [5], motivated by their use of financial incentives. 

Second, 

LCP correctness, where users should be able to modify LCPs only in a predefined manner. 

First, we propose a venue centric VCPROFILE, that relieves the GSN provider from a costly involvement in venue specific 

activities. To achieve this, VCPROFILE stores and builds LCPs at venues. Furthermore, it relies on Benaloh’s homomorphic 

cryptosystem and zero knowledge proofs to enable oblivious and provable correct LCP computations. We prove that 

VCPROFILE satisfies the introduced correctness and privacy properties. Second, we propose a completely decentralized 

VCPROFILE extension, built around the notion of snapshot LCPs. The distributed VCPROFILE enables user devices to 

aggregate the profiles of co-located users, without assistance from a venue device. Snapshot LCPs are not bound to venues, but 

instead user devices can compute LCPs of neighbors at any location of interest. Communications in both VCPROFILE 

implementations are performed over ad hoc wireless connections. The contributions of this paper are then the following: 

» Introduce the problem of computing location centric profiles (LCPs) while simultaneously ensuring the privacy and 

correctness of participants. 

» Propose VCPROFILE, a framework for computing LCPs. Devise both a venue centric and a decentralized solution. 

Prove that VCPROFILE satisfies the proposed privacy and correctness properties. 

» Provide two applications for VCPROFILE:privacy preserving, personalized public safety recommendations and  

privately building real time statistics over the profiles of venue patrons with Yelp accounts. 

» Evaluate VCPROFILE through an Android implementation. Show that VCPROFILE is efficient even when deployed 

on previous generation smartphones. 

The paper is organized as follows. Section II describes related work Section III describes the system and adversary model 

and defines the problem. Section IV introduces VCPROFILE and proves its privacy and correctness. Section V introduces the 

notion of snapshot LCPs and presents a distributed, real-time variant of VCPROFILE. Section VI describes two VCPROFILE 

applications and Section VII concludes. 

II. RELATED WORK 

Location cloaking. Location and temporal cloaking techniques, or introducing errors in reported locations in order to 

provide 1-out-of-k anonymity have been initially proposed in [11], followed by a significant body of work [12], [13], [14]. We 

note that VCPROFILE provides an orthogonal notion of k-anonymity: instead of reporting intervals containing k other users, we 

allow the construction of location centric profiles only when k users have reported their location. Computed LCPs hide the 

profiles of participating users: user profiles are anonymous, only aggregates are available for inspection, and interactions with 

venues and the provider are indistinguishable. 

l-diversity. Machanavajjhala et al. [15] have shown that k-anonymity for published user data, where each record is 

indistinguishable from at least k−1 other records (for sensitive attributes), is not sufficient to provide anonymity. To address 

this, they defined an l-diverse data block of tuples from various users, as one that contains at least l “well-represented” values 
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for any sensitive attribute. We note that we do not collect individual (anonymized) user data. Instead, we build statistics over 

user data, that can be published only if k users contribute.  

GSN privacy. Puttaswamy and Zhao [16] require users to store their information encrypted on the GSN provider. This 

includes ‘friendship” and “transaction” proofs, cryptographically encrypted tokens encoding friend relations and messages. The 

proofs can only be decrypted by those who know the decryption keys. Transaction proofs are stored in “buckets” associated 

with approximate locations (e.g., blocks), enabling users to retrieve information pertinent to their current location. VCPROFILE 

takes the next step, by enabling the aggregation of user data in a privacy preserving manner.  

Mascetti et al. [17] propose solutions that hide user location information from the provider and enable users to control the 

information leaked to participating friends (e.g., co-location events), with a view to improve service precision, computation and 

communication costs. Freni et al. [18] argue that the inherent nature of geosocial networks makes it hard for users to gauge their 

privacy leaks. The proposed solution relies on a trusted third party to process posted locations according to user preferences, 

before publishing them on the GSN provider. 

Wernke et al. [19] use secret sharing and multiple, non-colluding service providers to devise secure solutions for the 

management of private user locations when none of the providers can be fully trusted. The position of a user is split into shares 

and each server stores one. A compromised server can only reveal erroneous user positions. In contrast, VCPROFILE provides 

the novel functionality of allowing the provider, venues and even users to privately compute LCPs over visitors or co-located 

users. VCPROFILE does not require multiple, mutually untrusted servers, or trusted third parties.  

Thompson et. al. [20] proposed a solution in which database storage providers compute aggregate queries without gaining 

knowledge of intermediate results; users can verify the results of their queries, relying only on their trust of the data owner. In 

addition to assuming a different environment, VCPROFILE does not assume venue owners to be trustworthy. Toubiana et.al 

[21] proposed Adnostic, a privacy preserving ad targeting architecture. Users have a profile that allows the private matching of 

relevant ads. While VCPROFILE can be used to privately provide location centric targeted ads, its main goal is different - to 

compute location (venue) centric profiles that preserve the privacy of contributing users.  

Online social network privacy. Recent work on preserving the privacy of users from the online social network provider 

includes Cutillo et al. [22], who proposed Safebook, a distributed online social networks where insiders are protected from 

external observers through the inherent flow of information in the system. Tootoonchian et al. [23] proposed Lockr, a system for 

improving the privacy of social networks by using the concept of a social attestation, which is a credential proving a social 

relationship.  

Baden introduced Persona, a distributed social network with distributed account data storage.While VCPROFILE builds on 

this work by requiring users to store their GSN information, its focus rests on protecting the privacy of users while 

simultaneously allowing venues to collect valuable statistics over visitors. This dual goal of VCPROFILE differentiates this 

paper from previous work.  

Sybil account detection. Our work relies on the assumption that participants cannot control a large number of fake, Sybil 

accounts. We briefly describe several relevant techniques for detecting social network Sybils. When given access to data 

collected by the social network provider, Wang et al. [24] proposed an approach that detects Sybil accounts based on their click 

stream behaviors (traces of click-through events in a browsing session). Molavi et al. [25] introduce a practical approach that 

focuses on the effects of Sybil accounts. They propose to defend against reviews from multiple identities of a single attacker, by 

associating weights with ratings and by introducing the concept of “relative ratings”. 
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III. MODEL AND BACKGROUND 

We consider a core functionality that is supported by the most influential geosocial network (GSN) providers, Yelp [1] and 

Foursquare [2]. This functionality is simple and general enough to be applicable to most other GSNs (e.g., Facebook Places, 

Google Latitude). In this model, a provider S hosts the system, along with information about registered venues, and serving a 

number of users. To use the provider’s services, a client application, the “client”, needs to be downloaded and installed. Users 

register and receive initial service credentials, including a unique user id. The provider supports a set of businesses or venues, 

with an associated geographic location (e.g., restaurants, yoga classes, towing companies, etc). Users are encouraged to report 

their location, through check-ins at venues where they are present. During a check-in operation, performed upon an explicit user 

action, the user’s device retrieves its GPS coordinates, reports them to the server, who then returns a list of nearby venues. The 

device displays the venues and the user needs to choose one as her current check-in location. Participating venue owners need to 

install inexpensive equipment (e.g., a $25 Raspberry PI [6], a BeagleBoard [7] or any Android smartphone). This equipment can 

be installed and used for other purposes as well, including detecting fake user check-ins [8] preventing fake badges and 

incorrect rewards, and validating social network (e.g., Yelp [1]) reviews. Venue deployed equipment provides a necessary 

ingredient: ground truth information from remote locations. 

a) Location Centric Profiles 

Each user has a profile PU = (pU1, pU2 , .., pUd} consisting of values on d dimensions (e.g., age, gender, home city, etc). 

Each dimension has a range, or a set of possible values. Given a set of users µ at location L, the location centric profile at L, 

denoted by LCP(L) is the set {LCP1, LCP2, .., LCPd} where LCPi denotes the aggregate statistics over the i –th dimension of 

profiles of users from µ . In the following, we focus on a single profile dimension, D. We assume D takes values over a range R 

that can be discretized into a finite set of sub-intervals (e.g., set of continuous disjoint intervals or discrete values). Then, given 

an integer b, chosen to be dimension specific, we divide R into b intervals/sets, R1, .., Rb. For instance, gender maps naturally to 

discrete values (b = 2), while age can be divided into disjoint sub-intervals, with a higher b value. We define the aggregate 

statistics S for dimension D of LCP(L) to consist of b counters c1, .., cb; ci records the number of users from µ whose profile 

value on dimension D falls within range Ri , i = 1..b. 

b) Private LCP Requirements 

 
Fig. 1. Solution architecture (k = 2). The red arrows denote anonymous communication channels, whereas black arrows indicate authenticated (and 

secure) communication channels. 

Let k be a security parameter, denoting the level of privacy we need to provide for users at any location. We then define a 

private LCP solution to be a set of functions, PP(k) ={Setup, Spotter, Check In, PubStats}, see Fig. 1. Setupis run by each venue 

where user statistics are collected, to generate parameters for user check-ins. To perform a checkin, a user first runs Spotter, to 
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prove her physical presence at the venue. Spotter returns error if the verification fails, success otherwise. If Spotter is successful, 

Check In is run between the user and the venue, and allows the collection of profile information from the user. Specifically, if 

the user’s profile value v on dimension D falls within the range Ri , the counter ci is incremented by 1. 

Location Correctness: Let A denote an adversary that controls the GSN provider and any number of users. Let C be a 

challenger that controls a venue V . A running as a user U not present at V , has negligible probability to successfully complete 

Spotter at V . 

LCP Correctness: Let A denote an adversary that controls the GSN provider and any number of users. Let C be a 

challenger that controls a venue V. Let CV denote the set of counters at V before A runs Check In at V and let C_ V be the set of 

counters afterward. If C_ V /א.CV , the Check In completes successfully with only negligible probability. 

Check-In Indistinguishability (CI-IND): Let a challenger C control two users U0 and U1 and let an adversary A control 

any number of venues. A generates randomly q bits, b1, .., bq , and sends them to C. For each bit bi , i = 1..q, C runs Spotter 

followed by Check In on behalf of user Ubi. At the end of this step, C generates a random bit b and runs Spotter followed by 

Check In on behalf of Ub at a venue not used before. A outputs a bit b_, its guess of b. The advantage of A, Adv(A) = |Pr[b_=b] 

is negligible. 

c) Attacker Model 

We assume venue owners are malicious and will attempt to learn private information from their patrons. Clients installed 

by users can be malicious, attempting to bias LCPs constructed at target venues. We assume the GSN provider does not collude 

with venues, but will try to learn private user information. 

d) Tools 

Anonymizers. We use an anonymizer [11]–[13] that (i) operates correctly – the output corresponds to a permutation of the 

input and (ii) provides privacy – an observer is unable to determine which input element corresponds to a given output element 

in any way better than guessing. We use Orbot [14], an Android implementation of Tor [13]. 

Location Verification. We use one of the protocols proposed in [8] to verify the location claims of users checking-in. For 

completeness, we now briefly describe this protocol. Let SPOTRV denote the device installed at venue V. When a user U 

expresses interest to check-in at venue V, SPOTRV initiates a challenge/response protocol. It sends to U the currently sampled 

time T , an expiration interval _T and a fresh random value R. U’s device generates a keyed hash of these values and sends the 

result back to SPOTRV. SPOTRV verifies the authenticity of the hash and ensures that the response is received within a short 

interval from the challenge. If the verification succeeds, SPOTRV uses its private key to sign a time stamped token and sends 

the result to U. U contacts the server S over the anonymizer (see above) and sends the token signed by SPOTRV . S verifies V ’s 

signature as well as the freshness (and single use) of the token. 

Secret Sharing. Our constructions use a (k,m) threshold secret sharing (TSS) [15] solution. Given a value R, TSS generates 

m shares such that at least k shares are needed to reconstruct R. A (k,m)-TSS solution satisfies the property of hiding: An 

adversary (provided with access to a TSS oracle) controlling the choice of two values R0 and R1 and given less than k shares of 

Rb, b אR {0, 1}, can guess the value of b with probability only negligible higher than 1/2. Secret sharing will enable the 

provider to decrypt encrypted counters only when at least k users (out of m) have checked-in at a venue. The k out of m property 

supports failures: users who check-in but do not participate in the protocol. 

Homomorphic Cryptosystems. We use the Benaloh cryptosystem [9], an extension of the Goldwasser-Micali [10]. 
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IV. VCPROFILE 

As mentioned before, SPOTRV denote the device installed at venue V. For each user profile dimension D, SPOTRV stores a 

set of encrypted counters – one for each sub-range of R. Overview. Initially, and following each cycle of k check-ins executed 

at venue V, SPOTRV initiates Setup, to request the provider S to generate a new Benaloh key pair. Thus, at each venue time is 

partitioned into cycles: a cycle completes once k users have checked-in at the venue. The communication during Setup takes 

place over an authenticated and secure channel (see Fig. 1). 

When a user U checks-in at venue V , it first engages in the Spotter protocol with SPOTRV , allowing the venue to verify 

U’s physical presence. A successful run of Spotter provides U with a share of the secret key employed in the Benaloh 

cryptosystem of the current cycle. For each venue and user profile dimension, S stores a set Sh of shares of the secret key that 

have been revealed so far.  

Subsequently, U runs Check In with SPOTRV, to send its share of the secret key and to receive the encrypted counter sets. 

As shown in Fig. 1, the communication takes place over an anonymous channel to preserve U’s privacy. During Check In, for 

each dimension D, U increments the counter corresponding to her range, re-encrypts all counters and sends the resulting set to  

SPOTRV . U and SPOTRV engage in a zero knowledge protocol that allows SPOTRV to verify U’s correct behavior: exactly 

one counter has been incremented. SPOTRV stores the latest, proved to be correct encrypted counter set, and inserts the secret 

key share into the set Sh. Once k users successfully complete the Check In procedure, marking the end of a cycle, SPOTRV runs 

PubStats to reconstruct the private key, decrypt all encrypted counters and publish the tally. The communication during 

PubStats takes place over an authenticated channel (see Fig. 1). 

a) The Solution 

Let Ci denote the set of encrypted counters at V, following the i -th user run of Check In. Ci = {Ci [1], ..,Ci [b]}, where Ci [ 

j ] denotes the encrypted counter corresponding to Rj, the j -th sub-range of R. We write Ci [ j] = E(u j , u_j , c j , j ) =[E(u j , c j 

), E(u_j,j )], where u j and u_j are random obfuscating factors and E(u, M) denotes the Benaloh encryption of a message M using 

random factor u. That is, an encrypted counter is stored for each sub-range of domain R of dimension D. The encrypted counter 

consists of two records, encoding the number of users whose values  on dimension  D  fall  within a particular sub-range of R. 

Let RE(v j , v_j , E(u j , u_j , c j , j ) denote the re-encryption of the j -th record with two random values v j and v_j : RE(v j , 

v_j , E(uj,u_j , c j , j )) = [RE(v j , E(u j , c j )), RE(v_j , E(u_j , j ))] = [E(u j v j , c j ), E(u_j v_j , j )]. Let Ci [ j]++ = E(u j , u_j , 

c j +1, j ) denote the encryption of the incremented j -th counter. Note that incrementing the counter can be done without 

decrypting Ci [ j ] or knowing the current counter’s value: Ci [ j] + + = [E(u j , c j )y, E(u_j , j )] = [yc j+1urj , E(u_j , j )] = [E(u 

j , c j + 1), E(u_j, j)]. 

In the following we use the above definitions to introduce VCPROFILE. VCPROFILE instantiates PP(k), where k is the 

privacy parameter. The notation P(A(paramsA), B(paramsB)) denotes the fact that protocol P involves participants A and B, 

each with its own parameters. Setup(V(),S(k)): The provider S runs the key generation function KG(l) of the Benaloh 

cryptosystem (see Section II-D). Let p and q be the private key and n and y the public key. S sends the public key to SPOTRV. 

SPOTRV generates a signature key pair and registers the public key with S. For each user profile dimension D of range R with b 

sub-ranges, 

SPOTRV performs the following steps: 

» Initialize counters c1, .., cb to 0. 

» Generate C0 = {E(x1, x_1, c1, 1), .., E(xb, x_b, cb, b)}, where xi , x_i , i = 1..b are randomly chosen values. Store C0 

indexed on dimension D. 
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» Initialize the share set Skey = ׎. 

» Generate system wide parameters k and m > k and initialize the (k,m) TSS. 

Spotter(U(L,T),V(),S(k)): Let L and T denote U’s location and current time. To ensure anonymity, U generates fresh 

random MAC and IP addresses. These addresses are used for a single execution of the Spotter and Check In protocols. SPOTRV 

uses one of the location verification procedures proposed in [8] to verify U’s presence at L and T. Let U be the i -th user 

checking-in at V . If the verification succeeds and i ≤ k, S uses the (k,m) TSS to compute a share of p (Benaloh secret key, factor 

of the modulus n). Let pi be the share of p. S sends the (signed) share pi to U. If i > k, S calls Setup to generate new parameters 

for V. 

CheckIn(U(pi, n, V), V(n, y, Ci−1, Skey )): Executes only if the previous run of Spotter is successful. U uses the same 

random MAC and IP addresses as in the previous Spotter run. Let U be the i -th user checking-in at V. Then, Ci−1 is the current 

set of encrypted counters. SPOTRV sends Ci−1 to U. Let v, U’s value on dimension D, be within R’s j -th subrange, i.e., v א Rj . 

U runs the following steps: 

» Generate b pairs of random values {(v1, v_1), .., (vb, v_b)}. Compute the new encrypted counter set Ci, where the 

order of the counters in Ci is identical to Ci−1:Ci = {RE(vl, v_l ,Ci−1[l])|l = 1..b, l _= j} ׫ RE(v j , v_j ,Ci−1[ j] ++)}. 

» Send Ci and the signed (by S) share pi of p to V. 

If SPOTRV successfully verifies the signature of S on the share pi , U and SPOTRV engage in a zero knowledge protocol 

ZK-CTR. ZK-CTR allows U to prove that Ci is a correct re-encryption of Ci−1: only one counter of Ci−1has been incremented. 

If the proof verifies, SPOTRV replaces Ci−1 with Ci and adds the share pi to the set Skey. Otherwise, SPOTRV drops Ci and 

rolls back to Ci−1. 

PubStats(V(Ck,Sh,V),S(p,q)): SPOTRV performs the following actions: 

» If |Sh| < k, abort. 

» If |Sh| = k, use the k shares to reconstruct p, the private Benaloh key. 

» Use p and q = n/p to decrypt each record in Ck, the final set of counters at V. Publish results. 

b) ZK-CTR: Proof of Correctness 

We now present the zero knowledge proof of the set Ci being a correct re-encryption of the set Ci−1, i.e., a single counter 

has been incremented. Let ZK-CTR(i) denote the protocol run for sets Ci−1 and Ci . U and SPOTRV run the following steps s 

times: 

» U generates random values (t1, t_1), .., (tb, t_b) and random permutation π, then sends to SPOTRV the proof set Pi−1 = 

π{RE(tl , t_l,Ci−1[l]), l = 1..b}. 

» U generates random values (w1,w_1), .., (wb,w_b). It sends to SPOTRV the proof set Pi = π{RE(wl,w_l ,Ci [l]), l = 

1..b} 

» SPOTRV generates a random bit a and sends it to U.  

» If a = 0, U reveals random values (t1, t_1), .., (tb, t_b)and (w1,w_1), .., (wb,w_b). SPOTRV verifies that for each l = 

1..b, RE(tl , t_l ,Ci1[l]) occurs in Pi−1 exactly once,and that for each l = 1..b, RE(wl,w_l ,Ci [l]) occurs in Pi exactly 

once. 

» If a = 1, U reveals ol = vlwl t−1l and o_l= v_lw_l t_−1l ,for all l = 1..b along with j , the position in Pi−1 and Pi of the 

incremented counter. SPOTRV verifies that for all l = 1..b, l _= j , RE(ol , o_l , Pi−1[l]) = Pi [l] and RE(o j , o_j , Pi−1[ 

j ]y) = Pi [ j ]. 

» If any verification fails, SPOTRV aborts the protocol. 
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c) Preventing Venue-User Collusion 

For simplicity of presentation, we have avoided the Sybil attack problem: participants that cheat through multiple accounts 

they control or by exploiting the anonymizer. For instance, a rogue venue owner, controlling k-1 Sybil user accounts or 

simulating k-1 check-ins, can use VCPROFILE to reveal the profile of a real user. Conversely, a rogue user (including the 

venue) could bias the statistics built by the venue (and even deny service) by checking-in multiple times in a short interval. 

Sybil detection techniques can be used to control the number of fake, Sybil accounts. However, the use of the anonymizer 

prevents the provider and the use of the unique IP and MAC addresses prevents the venue from differentiating between 

interactions with the same or different accounts. In this section we propose a solution, that when used in conjunction with Sybil 

detection tools, mitigates this problem. The solution introduces a trade-off between privacy and security. Specifically, we divide 

time into epochs (e.g., one day long). A user can check-in at any venue at most once per epoch.  

When active, once per epoch e, each user U contacts the provider S over an authenticated channel. U and S run a blind 

signature [16] protocol: U obtains the signature of S on a random value, RU,e. S does not sign more than one value for U for any 

epoch. In runs of Spotter and Check In during epoch e, U uses RU,e as its pseudonym (i.e., MAC and IP address). Venues can 

verify the validity of the pseudonym using S’s signature. A venue accepts a single Check In per epoch from any pseudonym, 

thus limiting the user’s impact on the LCP. The privacy breach mentioned above is due to the fact that now S can correlate 

Check Ins executed using the same RU,e. However, S does not know the real user identity behind RU,e – due to the use of blind 

signatures. 

V. SNAPSHOT LCP 

We extend VCPROFILE to allow not only venues but also users to collect snapshot LCPs of other, co-located users. To 

achieve this, we take advantage of the ability of most modern mobile devices (e.g., smartphones, tablets) to setup ad hoc 

networks. Devices establish local connections with neighboring devices and privately compute the instantaneous aggregate LCP 

of their profiles. 

a) Snapshot VCProfile 

We assume a user U co-located with k other users U1, ..,Uk . U needs to generate the LCP of their profiles, without 

infrastructure, GSN provider or venue support. An additional difficulty then, is that participating users need assurances that their 

profiles will not be revealed to U. However, one advantage of this setup is that location verification is not needed: U 

intrinsically determines collocation with U1, ..,Uk . Snapshot VCPROFILE consists of three protocols, {Setup, LCPGen, 

PubStats}: 

Setup(U(r ),U1, ..,Uk ()): U runs the following steps: 

» Run the key generation function KG(l) of the Benaloh cryptosystem (see Section II-D). Send the public key n and y to 

each user U1, ..,Uk . 

» Engage in a multi-party secure function evaluation protocol [19] with U1, ..,Uk to generate shares of a public value R < 

n. At the end of the protocol, each user Ui has a share Ri , such that R1..Rk = R mod n and Ri is only known to Ui . 

» Assign each of the k users a unique label between 1 and k. Let U1, ..,Uk denote this order. 

» Generate C0 = {E(x1, x_1, 0, 1), .., E(xb, x_b, 0, b)}, where xi , x_i , i = 1..b are randomly chosen. Store C0 indexed on 

dimension D. Each of the k users engages in a 1-on-1 LCPGen with U to privately and correctly contribute her profile 

to U’s LCP.  

LCPGen(U(Ci−1),Ui ()): Let Ci−1 be the encrypted counters after U1, ..,Ui−1 have completed the protocol with U. U 

sends Ci−1 to Ui . Ui runs the following:  
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» Generate random values (v1, v_1), .., (vb, v_b). Let j be the index of the range where Ui fits on dim on D. ensi

» Compute the new encrypted counter set Ci as: Ci = {RE(vl, v_l ,Ci−1[l])Ri mod n|l = 1..b, l _= j} ׫ RE(v j , v_j ,Ci−1[ 

j] ++)Ri mod n} and send it to U. 

» Engage in a ZK-CTR protocol to prove that Ci א .C i−1. The only modification to the ZK-CTR protocol is that all re-

encrypted values are also multiplied with Ri mod n, Ui ’s share of the public value R. If the proof verifies, U replaces 

Ci−1 with Ci . 

After completing LCPGen with U1, ..,Uk , U’s encrypted counter set is Ck = {E j = E(u j , u_j , c j , j )R1..Rk | j = 1..d}, 

where u j and u_j are the product of the obfuscation factors used by U1, ..,Uk in their re-encryptions. The following protocol 

enables U to retrieve the snapshot LCP. 

PubStats(U(Ck)): Compute E j K, ׊ j = 1..d, where K = R−1 mod n (R = R1..Rk ), decrypt the outcome using the private 

key (p, q) and publish the resulting counter value. U verifies that the j -th decrypted record is of format (c j , j ) and that the sum 

of all counters equals k. If any verification fails, U drops the statistics - a cheater exists. Otherwise, the resulting counters denote 

the aggregate stats of U1, ..,Uk . Even though U has the private key allowing it to decrypt any Benaloh ciphertext, the use of the 

secret Ri values prevents it from learning the profile of Ui , i = 1..k. This protocol is a secure function evaluation - the 

participants learn their aggregated profiles, without learning the profiles of any participant in the process. We note however that 

existing SFE solutions cannot be used here: We need to ensure the input user profiles are correct, that is, each user increments a 

single counter. 

VI. APPLICATIONS 

We now propose two VCPROFILE application. 

a) Public safety 

Is a person likely to be safe in a specific public space, presently? The answer to this question is a function of the context of 

the space and of the person considered. In addition to location and time, the context is greatly influenced by the people present 

in that space. In previous work [20] we have proposed a personalized safety recommendation system, that leverages the history 

of locations visited by U to define his safety index. Specifically, we defined U to be safe within a context Ct, if U has a higher 

chance of crimes to occur around him, than the people in Ct.  

We propose to use VCPROFILE to build finer grained personalized safety recommendations, with privacy. VCPROFILE 

divides the safety index interval ([0, 1]) into sub-intervals, and associates a counter with each. VCPROFILE enables then a set 

of users to privately and correctly compute the distribution of their safety index values. Then, U is safe in a context Ct, if the 

number (or percentage) of users in Ct whose safety index values are smaller or equal to U’s safety index (are safer than U), 

exceeds a system wide threshold parameter. 

b) Real-Time Yelp Venue Stats 

In a second application, we rely on VCPROFILE to enable venues to collect fine grained, real time statistics over the 

profiles of patrons with Yelp accounts. To motivate participation, VCPROFILE prevents venues from inferring the identity and 

even the anonymous profiles of the currently present users. Yelp is an excellent source of user profile information. Yelp users 

own accounts storing a wealth of public and personal information, including name, home city, friends, reviews written, photos 

uploaded, check-ins, “Elite” badges, etc. Knowing the real time distribution of current patron profile information, such as locals 

vs. non-locals, gender, the types of venues preferred, can help venues understand their customers. Furthermore, by studying the 

evolution in time of such information, e.g., using time series analysis, may enable venues to generate forecasts and better cater 

to their customers. 
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VII. CONCLUSION 

In this paper, we propose to take first steps toward addressing the conflict between profit and privacy in geosocial 

networks. We introduce VCPROFILE a novel framework location centric profiles (LCPs). LCPs are statistics built from the 

profiles of users that have visited a certain location or a set of co-located users. LCP endows users with strong privacy 

guarantees and providers with correctness assurances. In addition to a venue centric approach, we propose a decentralized 

solution for computing real time LCP snapshots over the profiles of colocated users. The implementation shows that VCProfile 

is efficient; the end-to-end overhead is small even under strong privacy and correctness assurances. 
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